Work Sheet

Student Name:	
Team members: 1	2
3	4
Instructor:	

Introduction¹

Analysis

Acceleration Through an Atwood Machine

1. Draw the free body diagram for this experiment. Be sure to label the masses and the forces.

2. Use
$$a = g\left(\frac{m_2 - m_1}{m_2 + m_1}\right)$$
 to calculate the theoretical acceleration for each trial. Label them clearly!

3. Calculate the error percentage for the each trial. Which error percentage is the lowest and why? Explain.

Static Friction on a Horizontal Surface

1. Draw the free body diagram for this experiment. Be sure to label the masses and the forces.

2. Use $\mu_s = \frac{|F_{\text{applied}}|}{mg}$ to calculate the coefficient of the static friction for each material you used. Clearly label them. $F_{applied}$ is the maximum force you recorded.

Kinetic Friction on an inclined surface

1. Draw the free body diagram for this experiment. Be sure to label the masses and the forces.

- 2. Use $\mu_k = tan\theta |\frac{a}{g}|sec\theta$ to calculate the coefficient of the kinetic friction between the wooden surface and the inclined surface.
- 3. Considering the previous experiment, would μ_k change with different surfaces? If so, how?

Conclusion

 $^{^1\}mathrm{This}$ is an adaption from S. Sugaya's original version