Raw Data Sheet

Student Name:	
Team members: 1	2
3	4
Instructor	

Acceleration Through an Atwood Machine

Record the masses of each trial, and record the slope of the velocity curve. Make one printout per group to be handed in, and note down the section title. Be sure to write down the units.

Trial 1: m_1 :	<i>m</i> ₂ :	Slope:	Plot(v vs. t):
Trial 2: m_1 :	<i>m</i> ₂ :	Slope:	$\underline{\qquad} Plot(v vs. t): \underline{\qquad}$
Trial 3: m_1 :	<i>m</i> ₂ :	Slope:	$\underline{\qquad} Plot(v vs. t): \Box$

Static Friction on a Horizontal Surface

Record the type of surface and the maximum force applied before the 2 kg mass started to move. Make one printout per group to be handed in, and note down the section title along with corresponding surface. Include units.

Surface: _____

Maximum force: _____

Plot (F vs. t): \square

Surface:	

Maximum force: _____

Plot (F vs. t): \Box

Kinetic Friction on an Inclined Surface

Record the mass of the wooden block, the inclination angle and the slope of the velocity curve. Make one printout per group to be handed in, and note down the section title. Be sure to write down the units.

<i>m</i> _{block} :	-
Angle:	
Slope:	
Plot (v vs. t):	