Raw Data Sheet

Student Name:	
Team members: 1	2
3	4
Instructor:	

One Dimensional Collisions

Length of the sail: _____ (cm)

Table 1.- Columns left to right indicate collision type, car's mass and the time required to travel the length of the sail. The subindices 1 and 2 indicate car number, while i and f refer to the initial and final states. X stands for "not required".

Collision Type	m_1 (g)	m_2 (g)	t_{1i} (s)	t_{1f} (s)	t_{2f} (s)	$t_{2f} + t_{1f}$ (s)
Perfectly Elastic				X		Х
Partially Elastic						
Totally Inelastic					Х	Х

Two Dimensional Elastic Collisions

Frequency of the sparks	:	 (Hz)
Puck's mass	:	 (g)

Table 2.- Raw data: Δl_1 and Δl_2 are the distances between selected points along each track; θ_1 and θ_2 are the angles between the coordinate axes and the velocity vectors. Note: time is the elapsed time between the selected points.

State	$ertec{\Delta l_1}ert$ (cm)	θ_1 (degrees)	$ \vec{\Delta l_2} $ (cm)	θ_2 (degrees)
Initial		zero		
Final				