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Preface

Our freshman laboratory program aspires to provide students with engaging and rewarding interactions
with the physics of the world around them. The weekly laboratories address a cross-section of the con-
cepts introduced in the lecture part of the course. The Physics Laboratory Manual is the handbook for the
class and introduces the student to the techniques of obtaining and analyzing experimental observations
using diverse methods and equipment. The sessions are led by a Teaching Assistant (TA), who is usually
a physics graduate student.

Your TA will provide you with a syllabus during the first lab session that will outline the requirements for
each lab and its associated laboratory report. In general, students are asked to report their activities and
results clearly and concisely in formats ranging from “worksheets” to a formal lab report write-up. The
time spent outside of lab on preparation, data analysis, and presentation will vary somewhat on the lab
and on the TA, and especially on how much work is done while in the lab. An average time of no more
than 3 hours of outside work per lab is encouraged.

Some guidelines to remember throughout the semester:

1. Make sure to always get your raw data sheet signed and/or initialed by your TA prior to leaving the
lab session.

2. Punctuality in attendance and completion of assignments.
3. Rotation of individual roles in a team effort to ensure everyone’s participation in the exercises.
4. Approaching all issues with professional courtesy and respecting the efforts, opinions, and property

of others.
5. Disruptive behavior, including horseplay and reckless use of equipment, will NOT be tolerated!

In an effort to provide the most interesting and interactive physics labs possible, the department of physics
at New Mexico Institute of Mining and Technology undertook a significant revision of its lab course man-
ual (Physics 121) during the 2013 – 2014 academic year. This involved major modifications and im-
provements to already existing labs, and building labs combining ideas from several different sources and
universities. Some of the worksheets used for labs are adapted from those written by graduate students
Satomi Sugaya and Sam Collopy.

Of course, nothing is ever done in isolation, and our efforts relied heavily on the work of those who
came before, most notably the original author of a major portion of the labs found within this manual.
Also, Dr. Barry Sabol provided useful, additional material and information for the labs over the years,
which directly led to several of the modifications made. We’d like to also thank current and previous NM
Tech physics graduate student instructors and physics professors for their efforts on behalf of this course,
including informative and critical feedback.

Carlos Lopez Carrillo
Tina Güth

June 2014
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Lab 1

Vector Addition of Forces

In this lab, we introduce vectors and demonstrate vector addition using a familiar vector quantity –force. We do this
experimentally by using a force table, which allows three separate forces to be in static equilibrium. We also balance
the forces graphically and mathematically.

1.0.1 Background
Vectors are quantities that have both a magnitude and a direction. You can think of them as packets of information.
They pack a bit more information than scalars, which only contain magnitude information.

Describing a Force, requires both, the specification of its magnitude and the direction along which it is being
applied. Hence, forces are described as vector quantities. In this lab manual, we write these quantities with an arrow
overhead to indicate that such quantity has not only magnitude but directionality, e.g., F⃗ . When we refer to only the
magnitude of a vector we, usually skip the arrow and write F . However, sometimes we write |F⃗ | to emphasize that
we are only talking about the magnitude of the vector F⃗ .

Specifying direction can be done in various ways. Figure (1.1) shows a simple example, where the direction is
specified by the angle, θ, measured counterclockwise from the x axis. Another way to specify the same direction is by
giving the angle measured clockwise from the y axis.
Still another way to specify the direction of a vector is by providing the slope of the line along the vector, which is
equivalent to specify the tangent of θ. For example, calling Fx the leg along the x axis and Fy the leg along the y axis,
we can write

tan(θ) =
Fy

Fx
. (1.1)

Note that by specifying those legs, we are implicitly specifying the magnitude of the vector, that is

F =
√
F 2
x + F 2

y , (1.2)

where we have use the Pythagorean theorem. We normally refer to these legs as the components of the vector.
Since forces are vector quantities, when more than one force acts on a body, the rules of vector addition must be

used to determine the resultant force. These rules are slightly more complicated than the addition of scalars due to the
directionality information, which typically requires more than one dimension. In this lab, we limit ourselves to vectors
in two dimensions.

Experiment

We use a force table to find the force that balances the two that are applied. A force table is a circular table that we
use to apply forces of different magnitude and direction to a small ring in the center. Three strings are attached to
the ring, run over pulleys on the edge of the table, and terminate on mass hangers, which hold known masses. The
pulleys transfer the vertically directed gravitational force of the masses to a horizontal tension force on the ring. The
magnitudes of the forces can be adjusted by changing the masses, and the directions can be adjusted by moving the
pulleys around the table (marked from 0◦ to 360◦). Thus, when we start with two fixed forces, we can adjust the third
to balance them and create static equilibrium as seen in Figure (1.2).
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Figure 1.1: Vector: magnitude and direction

Graphically

Referring to Figure (1.3), the resultant force (R⃗) due to vectors A⃗, and B⃗ is just the vector addition of the two vectors.
To perform this sum graphically, start by drawing vector A⃗ with its tail at the origin of coordinates. Next draw vector
B⃗ with is tail at the head of vector A⃗. Both vectors must be drawn to scale. The resultant vector goes from the tail
of vector A⃗ to the head of vector B⃗ (tail-to-head). The balancing vector C⃗ must be of the same magnitude as R⃗ but
in the opposite direction (it goes head-to-tail). Note that vectors may be drawn anywhere in the plane as long as they
maintain their magnitude and orientation.

Mathematically

In this section, we show how to reduce the two dimension problem of adding vectors to several one dimensional
problems, which we know how to solve. The resultant force R⃗ is found from two applied forces A⃗ and B⃗ according to
the following process. First, break A⃗ and B⃗ into their Cartesian components:

A⃗ = Ax ı̂+Ay ȷ̂

B⃗ = Bx ı̂+By ȷ̂

where ı̂ and ȷ̂ are unit vectors specifying direction along the x and y axes, respectively, and their coefficients are
the corresponding magnitudes. In this way, we reduce the problem to two one-dimensional problems: one along the
x-direction and one along the y-direction, where we only add scalars using the usual rules of arithmetic.

Adding matching components arithmetically:

R⃗ = A⃗+ B⃗

R⃗ = Ax ı̂+Ay ȷ̂+Bx ı̂+By ȷ̂

R⃗ = (Ax +Bx)̂ı+ (Ay +By)ȷ̂

Once we have the components of the resultant vector, we could find its magnitude and the angle it makes with the x
axis.

R =
√

(Ax +Bx)2 + (Ay +By)2, (1.3)

tan(θ) =
Ay +By

Ax +Bx
. (1.4)



5

B

A

C

1
8
0 0

1
0

2
0

3
0

4
0

50

60

70

80
90

100

110

12
0

13
0

1
4
0

1
5
0

1
6
0

1
7
0

3
5
0

3
4
0

3
3
0

3
2
0

31
0

30
0

29
0

280270
260

250

240

230

2
2
0

2
1
0

2
0
0

1
9
0

R

Metal Ring

Strings

Pin

Pulley

Protractor

Figure 1.2: Schematic demonstrating a force table in static equilibrium. Note that the pin should be at the center of
the metal ring; vectors A⃗, B⃗, C⃗, and R⃗ point away from the center of the table.

In this lab, we are examining static equilibrium, which means that the net force (that is, the total sum of all forces)
is zero. The net force is simply

R⃗ = A⃗+ B⃗.

To balance this force, we must apply a force of equal magnitude, but in the opposite direction. That is

C⃗ = −R⃗,

so that
A⃗+ B⃗ + C⃗ = 0.

When the force is given as a magnitude and an angle of direction (as is the case here), use trigonometry to break it into
its Cartesian components.

Example

Referring to Figure 1.2, Force B⃗ is given as 10 N at 120◦ from the positive x-axis. Its x component is pointing in the
negative direction (−ı̂), while its y component points in the positive direction (ȷ̂):

Bx = |B⃗| cos(θ),
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Figure 1.3: Graphic addition of vectors A⃗ and B⃗. Both vectors must be drwan to scale and maintain original orienta-
tion. The resultant vector (R⃗ = A⃗ + B⃗) is shown as an arrow from the tail of A⃗ to the head of B⃗. A balancing vector
C⃗ to counteract R⃗ is shown as a dashed arrow with the same magnitude of R⃗, but in the opposite direction.

Bx = (10N) cos(120◦) = −5N.

By = |B⃗| sin(θ),
By = (10N) sin(120◦) = 8.66N.

Force A⃗ is given as 10 N at 0◦ from the positive x-axis. Hence,

Ax = (10N) cos(0◦) = 10N,

Ay = (10N) sin(0◦) = 0N.

Adding these two vectors results in
R⃗ = A⃗+ B⃗,

R⃗ = (Ax +Bx)̂ı+ (Ay +By)ȷ̂,

R⃗ = [(10− 5)̂ı+ (0 + 8.66)ȷ̂]N,

R⃗ = [5ı̂+ 8.66ȷ̂]N

If we have the x and y components (i.e. Rx and Ry) of a vector, the magnitude can be determined as follows

|R⃗| = (R2
x +R2

y)
1/2 = ((5)2 + (8.66))2)1/2N = 10N .

To determine the angle, we first determine the quadrant the resultant vector falls into and then use the magnitudes of
the components to obtain the angle with the x-axis. In the current case, the resultant vector falls into the 1st quadrant
(Rx = 5N , Ry = 8.66N ) and the angle with the x-axis is given by

θ = arctan(|Ry|/|Rx|) = arctan(8.66N/5N) = 60◦.
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To balance the resultant force, we must add a counterweight on the Force table of the same magnitude, but in the
opposite direction. This balancing force is represented by vector C⃗.

1.0.2 Procedure
The following steps provide direction for the vector addition of three forces using the experimental procedure. There
are three different cases in all, as listed below.

Case 1:

A⃗ = 0.98N at 0◦

B⃗ = 0.686N at 60◦

Case 2:

A⃗ = 0.98N at 90◦

B⃗ = 0.98N at 315◦

Case 3:

A⃗ = 1.372N at 180◦

B⃗ = 0.98N at 150◦

Experimentally

1. Calculate and record the masses needed to produce the forces given in each case above. Use Newton’s second
law, F⃗ = ma⃗, assuming that the magnitude of a⃗ is equal to 9.8 m/s2. Pay careful attention to the units!

2. Attach the calculated masses to their corresponding strings and move them to the required angular positions.
Keep in mind that the hanger itself has a mass of 50 g and that the masses calculated above are the total required.

3. Vary the mass and angle of the third force until equilibrium is reached. That is, adjust both the mass on the
hanger of the third string and its angular position until the metal ring is suspended at rest and centered on the
central pin of the table. You may need to flick the ring lightly as frictional forces can sometimes keep it from its
true equilibrium position.

4. Record the angle and total mass of the third string in your raw data sheet. Repeat for the other two cases.

1.0.3 Analysis
Experimentally

i. For each case, use the mass determined in the Procedure Section to calculate the magnitude of the balancing
force. Show your work.

Graphically

i. Draw and label coordinate axes with a ruler on a piece of graph paper (graph paper is provided at the end of the
lab manual). To ensure accurate results, use a protractor and ruler. Note that 0◦ defines the x-axis, while 90◦ the
y-axis.

ii. Draw, to scale, the forces given for each case. Follow the method illustrated in the Background Section. Be sure
to label your forces and provide the scale used (e.g., 1 N = 5 cm). Each case has to be drawn on a separate set of
coordinate axes.

iii. Determine the balancing force from the graph by measuring the length of the resultant vector. Use the scale you
decided on in the previous step and convert the length into Newtons (N). Also, determine the resultant angle from
the graph you drew.

iv. For the angle, consider the quadrant of the resultant vector. Make sure to record the angle value for each case.

v. Attach all three graphs, including the scale used, with your lab report.
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Mathematically

i. Break the forces given in each case into its Cartesian components. Follow the method outlined in the Background
Section and show all of your work.

ii. Calculate the magnitude and direction angle of the resultant force. Be careful when determining the angle by
considering the quadrant of the resultant vector.



Lab 2

Kinematics

In this lab, we study the description of a particle’s motion. The objective is to recognize constant velocity and various
types of accelerated motion from looking at the track left by a moving particle.

2.1 Background
Describing the motion of a particle requires a good understanding of how position is related to velocity and to accel-
eration. Here we develop a simple technique to obtain velocity and acceleration information from time and position
measurements. This technique will serve us well later in the semester when we use it to study energy and momentum
conservation. Nevertheless, the focus of this lab is to show that even when experimentally, we can only measure aver-
age velocities, we can still recognize the influence of external forces acting upon an object just by tracking its position
with time.

During the analysis part of this lab, you will be asked to compare some measurements. In physics, this task has a
particular meaning, which we now describe. We can compare measurements by calculating their relative percentage
difference with respect to some arbitrary reference (typically taken as one of the measurements). For instance, if we
measure the speed of an object at the beginning and end of an experiment, we can compare their values by taking
their difference and then compare this difference to the initial value of the speed. In this case, the relative percentage
difference is given by

vf − vi
vi

× 100 (2.1)

Note that by dividing the difference by one of the two quantities, we eliminate the units and, therefore, the scale. You
will also be required to decompose displacement vectors into components. Figure (2.1) shows an example of how to
break vectors into their Cartesian components. Ask your Instructor if you have questions about how to perform these
operations.

2.2 Procedure
The following steps provide direction to set up the equipment, perform the experiment and prepare the data for analysis.

Equipment

Note: The air table used in this experiment uses high voltage to produce sparks. On the other hand, the current is
very small, so in principle, the table is not a life-threatening device. However, the high voltage can still sting you very
much. Keep your hands off the table when the electrical circuit is activated.

Figure (2.2) shows the setup for this experiment. The air table has a glass surface, which we cover with a piece
of special carbon paper that allows electricity to flow between the two pucks sitting on the table and connected to a
power supply (sparking source). A sheet of Manila paper is then placed on top of the carbon paper, under the pucks.
Every time there is a spark generated, there will be a mark left by the carbon on the Manila paper at the location of

9
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Figure 2.1: Vector Components. R⃗i indicates the ith position vector, ∆R⃗i indicates the displacement vector from R⃗i−1

to R⃗i; The components of ∆R⃗i are also indicated; note that the position vectors are drawn at the actual locations of
the object, we can measure the components of ∆Ri directly on the graph.
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Figure 2.2: Schematic of the Air Table.

each puck. As the puck moves, it leaves a trace, which we refer to as the track or the graph. Note that while both pucks
are required to be on the air table (to close the electrical circuit), we keep one at a corner and only track the motion of



2.2. PROCEDURE 11

the other.

The friction between the pucks and the table is minimized by a flow of air running from a compressor to each puck.

For this experiment, we set the spark frequency to 20 Hz (20 sparks per second). This frequency is merely the
inverse of the sparking period (the time interval between each spark). That is, one spark every 1/20th of a second
(T = 1/f). The period between sparks is constant during the experiment, so we can always determine how much time
has passed between any two marks left by the puck.

The electrical circuit is activated by the foot-switch on the floor by the table. It is recommended that the person
who sets the pucks in motion is the same person that activates the circuit.

The following experiments can be done in any order. However, it is recommended that all teams finish experiment
one before moving on to experiments two and three.

2.2.1 Experiment 1

1. Make sure that the air table is leveled;

2. Position one puck in a corner by the air-head support (see Figure 2.2), and the other in a corner on the opposite
side, and close to you; this point is the starting position.

3. Practice setting the puck in motion, so it travels along the edge of the table.

4. To record the puck’s track set the puck in motion as practiced and quickly activate the spark timer using the foot
pedal. Be sure to turn off the spark timer as soon as the puck collides with the other side of the air table.

5. At the end of the run, remove the spark sheet from the air table. Make sure to mark the starting point on your
spark sheet. Confirm your result with your Instructor before moving on.

2.2.2 Experiment 2

1. Incline the air table by about 5 degrees, so that the lowest side is where the air-head support is located, see
Figure 2.2.

2. Make sure that the air table is only tilted in one direction.

3. Position the puck near the highest side of the table and practice letting it go without pushing it.

4. Record the track as in experiment 1 and confirm the results with your Instructor.

2.2.3 Experiment 3

1. Keep the same inclination of the table as in experiment 2.

2. Make sure the manilla paper is well aligned with the sides of the air table, so that the x and y directions shown
in Figure 2.2 are parallel to the table’s sides.

3. Practice sending off the puck as in experiment 1 –with a very gentle push along the highest edge of the air table.

4. Record the track as in experiment 1 and confirm the results.
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2.2.4 Measurements
1. For each of the graphs, label the first dot as zero and index the rest of the dots according to your Instructor’s

directions. Check with your Instructor if you are unclear about how to start the sequencing and labeling.

2. Draw displacement vectors between successive indexed dots.

3. For experiments one and two, measure the distances between successive indexed dots. Record these distances
as ∆x, for experiment 1, and ∆y for experiment two, in a table with their corresponding index. These values
are used in the Analysis Section to calculate the puck velocity along each direction.

4. For experiment three, break the displacement vectors into x and y components; measure the magnitudes of these
components, and record them as ∆x and ∆y in your table.

2.3 Analysis
The first two experiments are performed, so the motion is one-dimensional, while the third is two dimensional. The
vector nature of the velocity should be clear by drawing arrows to represent the displacement vectors on the graphs.
Recall that the velocity vector is the time rate of change of the position vector,r⃗. That is,

V⃗ =
dr⃗

dt
≈ ∆r⃗

∆t
. (2.2)

Writing this equation in terms of Cartesian components, we have

Vx =
dx

dt
≈ ∆x

∆t
(2.3)

Vy =
dy

dt
≈ ∆y

∆t
(2.4)

(2.5)

2.3.1 Velocity
i. Draw arrows connecting the indexed dots on the track to illustrate the displacement vector, which coincides with

the direction of the velocity;

ii. For each experiment, use the components of the displacement vector and the time between indexed dots to calcu-
late the components of the average velocities.

2.3.2 Acceleration
To get insight into how the velocity changes, we use a graphical representation of the data. Since we control the time
when the velocity measurements are taken (we set the timer frequency), time is the independent variable, while the
velocity is the dependent one. Following the convention, the independent variable is plotted on the horizontal axis and
the dependent variable on the vertical axis.

i. For each experiment, make a plot of the velocity components against time; your data should resemble a straight
line. Using a ruler, draw a line that is as close as possible to all your data points. Beware of obvious outliers, and
do not force your line to accommodate them. The line that best represents your data points (excluding outliers) is
called the best-fit line. Consult with your Instructor to see if your fitted lines are acceptable.

ii. For each experiment, determine the slope of the best-fit line to get the corresponding acceleration. As with any
straight line, the best-fit line is characterized by two parameters: its slope and its y-intercept. Its equation is simply

y = mx+ b, (2.6)
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where x is the independent variable, m the slope, and b the y-intercept; the slope is given by

m =
∆y

∆x
. (2.7)

In our case, x is time, and y is the velocity. Hence, the slope of the best-fit line is the acceleration, a. By the way,
when calculating the slope of the best-fit line, use points directly off the line and not the data points.

iii. For experiments one and three, compare the acceleration along the x axis. Finally, compare the acceleration along
the y axis between experiments two and three.

Note: follow your Instructor’s directions concerning the submission of your spark sheet with your lab report.
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Lab 3

Projectile Motion

In this lab, projectile motion is studied with emphasis on the vectorial aspect of the equations of motion, which are
decomposed into Cartesian components for their analysis. The range of a projectile is measured for different launch
configurations and then compared to the values predicted by theory.

3.1 Background

Here we explore a practical application of the vector equations of motion – projectile motion. Using a spring-loading
launcher, we measure the range of projectiles for different launch configurations and compare these values with those
predicted by theory.

Projectiles near the earth’s surface trace out parabolas in their motions because gravity is the only force acting on
them (ignoring air friction), and it acts only in the downward vertical direction. Therefore, when considering the vec-
tor equation of motion for a projectile, we break it into its Cartesian components and see that the horizontal velocity
remains constant while the vertical velocity changes under the influence of gravity.
If we let the +x direction be horizontally to the right and the +y direction to be vertically up, then Figure (3.1) shows
the velocity vector of a projectile that moves in a parabolic path.

V0x

V0y

V0x

V0x

V0x

V0x

Vy

V  =y

H

V0y

= 0
Y

R
X

Figure 3.1: Schematic showing the x and y components of a velocity vector of a projectile moving along a parabolic
path; R is the range of the projectile and H is its maximum height.

15
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For constant gravitational acceleration pointing in the negative direction, the vector equation for velocity as a
function of time is

v⃗(t) = v⃗0 − gtȷ̂, (3.1)

which can be separated in Cartesian components as

vx(t)̂ı+ vy(t)ȷ̂ = (v0x ı̂+ v0y ȷ̂)− gtȷ̂ (3.2)

or
vx(t)̂ı+ vy(t)ȷ̂ = v0x ı̂+ (v0y − gt)ȷ̂. (3.3)

We can group matching components and write this equation as two separate ones:

vx(t) = v0x (3.4)

vy(t) = v0y − gt (3.5)

From these expressions, we clearly see that the horizontal velocity is constant while the vertical changes with time.

We do the same to the equation expressing the projectile position as a function of time, given as

R⃗(t) = R⃗0 + v⃗0t−
1

2
gt2ȷ̂, (3.6)

which has the resulting two component equations

x(t) = x0 + v0xt, (3.7)

and
y(t) = y0 + v0yt−

1

2
gt2. (3.8)

Notice that the x-position changes linearly in time because the x-velocity is constant while the y-position is
quadratic in time. These are the two equations we apply to find the theoretical ranges in the projectile experiment.

The experiment in this lab involves a launcher that shoots projectiles. It has three different spring settings (short,
medium, and long ranges), each one having its own muzzle speed, v⃗0. The components of the velocity v0 depend on
the angle θ of the launcher with respect to horizontal. Hence, v0x = v0 cos(θ) and v0y = v0 sin(θ) as seen in Figure
(3.2).

3.2 Procedure
This experiment involves several parts. The first is to measure the muzzle velocities of the launcher. The second is to
perform two different launch experiments, each one with different settings for the launcher. And the final part is to find
the angle for which the launcher shoots the projectile over the maximum range. See Figure (3.2) for the parameters of
the experimental setup.

You must wear goggles at all times to protect your eyes!

3.2.1 Muzzle Velocity
1. Note that the photogate timer is already situated at the mouth of the launcher. The photogate timer consists of a

main gate and an accessory gate; both gates emit an infrared beam. As the projectile interrupts the beam of the
main gate, the timer is started and stops when the projectile interrupts the beam of the accessory gate.

2. Measure and record the distance between the main and accessory gates in your raw data sheet.
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Figure 3.2: Diagram showing the parameters of the experiment setup. Note that the impact point is on the floor.

3. Set the photogate timer to PULSE mode. Make sure that the launcher is slightly tilted so that the ball is sitting
against the launchpad in the nozzle for each range setting. Use the angle indicator on the side of the launcher to
set a tilt of ∼ 1◦, if not already done so.

4. Set the launcher to medium range. Use the black rod provided to push the launchpad to the correct setting.
Carefully insert the ball since some launchers are easily triggered!

5. Launch a projectile for three separate trials and record each displayed time in your raw data sheet. Be careful
not to move the launcher and photogate during the trials.

6. Repeat for the launcher’s long range setting.

3.2.2 Launch Experiments
1. Remove the photogate by loosen the bottom screw and sliding it off.

2. Set the launcher’s parameters according to your TA’s instructions. That is, set its angle θ, the range (either
medium or long), and the impact height y (the height of the target area).

3. After setting the launcher to the required angle, measure and record the launch height, y0, which is taken at the
crosshair indicator on the side of the launcher mouth.

4. Sketch the setup on your raw data sheet, and make a note of the reference height (considered to be zero). Make
sure to label all parameters in your sketch.

5. To locate the point of impact, launch the projectile for a few preliminary trials.

6. Tape a piece of paper on the impact area and place a carbon sheet on top of it. Do not tape down the carbon
sheet!

7. Launch the projectile for three separate trials. Before each launch, check that the launch angle is still correct
as it might change after you set the launch range. Be sure that the carbon sheet remains on the paper covering
the impact area throughout the trials. The projectiles should leave a carbon imprint on the paper at their impact
points.
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8. Remove the carbon sheet but do not remove the taped down paper. Determine the average impact point on the
paper and mark it. To record the range, x − x0, measure the horizontal distance between the launcher mouth
and the average impact point.

9. Repeat the experiment with a different set of parameters provided by your TA.

3.2.3 Angle of Maximum Range
1. Relocate and adjust the launcher so that the launch and impact heights are the same, that is y = y0. Use the

provided boxes to set the heights equal. You will need to use a notebook or pieces of paper to adjust for any
differences that can occur for each angle setting.

2. Use the medium setting for the launcher. Set the launch angle to 40◦.

3. Launch the projectile three times and mark the average impact point. You may use the same technique of
marking this average impact point as done previously.

4. Measure and record the range, x − x0, which is the horizontal distance between the launcher mouth and the
average impact point.

5. Repeat, at the launcher’s medium setting, for a launch angle of 45◦ and again for 50◦. Make sure to measure y
and y0 to ensure the heights are still equal.

3.3 Analysis
i. Calculate the average muzzle speed, v0 for both range settings. Show your work.

ii. For the two launch experiments, find the theoretical ranges (x−x0) using the experiments’ parameters and muzzle
velocities. Do this by solving equation (3.8) for the time t, and then plug it into equation (3.7). You will need to
use the quadratic formula. Show your work.

iii. Compare by relative difference your theoretical ranges to your measured ranges. Comment on any differences
between the theoretical and the measured. Were the effects of air friction noticeable? Explain.

iv. From equations (3.7) and (3.8) show, in general, that the range is given by R = (V 2/g) sin(2θ), where V is the
initial speed of the projectile, g is the acceleration of gravity, and θ is the launching angle.
Hint: use the identity sin(2θ) = 2 sin(θ) cos(θ).

v. For the Angle of Maximum Range experiment, make a plot of the range R as a function of the launching angle θ.

vi. Does your data support the prediction that the maximum range is attained at 45◦?



Lab 4

Newton’s Laws –Part I

In this Lab, we start the study of Newton’s second and third laws of motion. The relevant variables, velocity, acceler-
ation, and force, are measured using a computerized system for data acquisition. These measurements are performed
on air and track.

4.1 Background

Newton’s second law states that the net force, F⃗net, acting on a body is directly proportional to the object’s mass, m,
and its acceleration, a⃗. Thus the equation is given by F⃗net = ma⃗. Newton’s third law states that any action will have
an equal and opposite reaction. In the following subsections, the theory associated with each of the experiments to be
performed is described.

4.1.1 Acceleration along an Air Track
In this experiment, we find both the acceleration of the car and the total frictional force acting against it as the car is
pulled by a falling mass. The basic components of the experiment are illustrated in Figure (4.1).

Y

X

1m

2m

Figure 4.1: Diagram demonstrating the basic components of the experiment. Note that gravity, g⃗, points down verti-
cally.

Applying Newton’s laws, we have

F1,net = T − f F2,net = m2g − T
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m1a = T − f −m2a = T −m2g

where f is the net frictional force opposing the car’s motion.

By Newton’s third law, the tension felt by m1 must be equal (and opposite) to the tension felt by m2. Therefore,
we find the acceleration by solving both equations for the tension and then setting them equal to each other:

m1a+ f = m2g −m2a

(m1 +m2)a = m2g − f

a =
m2g

m1 +m2
− f

m1 +m2

ameasured = aideal −
f

m1 +m2
(4.1)

where aideal is the acceleration of the car in the absence of friction and given by

aideal =
m2g

m1 +m2
(4.2)

In the experiment, we will find the total acceleration ameasured and then calculate the frictional force f in the Analysis
Section according to

f = (m1 +m2)(aideal − ameasured) (4.3)

which is obtained from equation (4.1) by solving it for f .

4.1.2 String Tension along an Air Track
This experiment is essentially the same as the previous one except that now the goal is to find the tension in the string
rather than the acceleration.

Referring to the diagrams and application of Newton’s laws in the previous experiment, we find the tension by solving
both equations for a and then setting them equal to each other as follows:

T − f

m1
=

m2g − T

m2(
1

m1
+

1

m2

)
T = g +

f

m1

T =

(
m2

m1 +m2

)
(m1g + f)

The only quantity unknown in this equation is the frictional force f . This value must be calculated from the measured
acceleration of the car according to equation (4.3).

Substituting the expression for f and simplifying, we have

T =

(
m1m2

m1 +m2

)
g +m2(aideal − ameasured)

T =

(
m1m2

m1 +m2

)
g +m2

[(
m2g

m1 +m2

)
− ameasured

]
T = m2(g − ameasured) (4.4)
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This final expression shows that the “missing” acceleration (that is, the observed difference from the gravitational
acceleration) goes entirely into the string’s tension. Alternatively, stopping the car (i.e., acceleration is zero) gives
T = m2g. When the car is released, the tension decreases. Therefore, the physical mechanism of the tension while
the car is moving is due partly to frictional force and partly to the inertial mass of the car.

In the experiment, we measure the tension in the string directly and then compare it in the Analysis Section to that
predicted by equation (4.4).

4.2 Procedure
First, to familiarize yourself with the motion sensor and graphing software, conduct the exercise, Velocity, and Ac-
celeration of Students. Then the two experiments involving the air track. Check the “Useful Guidelines” Handout
for help during the laboratory or inquire with your TA when needed.

4.2.1 Velocity and Acceleration of Students
This exercise uses the motion sensor to measure velocity. It measures the distance to an object from the delay times of
reflected ultrasonic “chirps” that it emits. It sends this information to the computer, where the software calculates the
object’s velocity and plots it against time. The acceleration is calculated from the slope of this plot.

1. Set up the motion sensor.

2. Walk in the beam’s path; try changing your speed occasionally.

3. Examine the distance and velocity graphs displayed on the computer. Familiarize yourself with the software and
learn how to edit the data points.

4.2.2 Acceleration along an Air Track
This experiment uses the motion sensor to measure the acceleration of a car along an air track as it is pulled by a
falling mass. Refer to the Diagram in the corresponding subsection of the Background Section for illustration of the
basic setup and parameters.

1. Place the four “silver” masses (each of mass 50 g) on the car’s sides.

2. Weigh the mass m1 of the entire car and separately weigh the mass m2. The mass m1 of the entire car includes
the car itself, the four masses added to it in step 1, and the sail attached to its top; m1 should be approximately
0.40 kg. The mass m2 is the hanging weight that falls to provide the acceleration for the car; it should be
approximately 0.02 kg. Make sure to record your values for m1 and m2!

3. Place the car on the air track, attach the string, and thread the other end of the string over the pulley.

4. Adjust the sail so that it is perpendicular to the direction of the car’s motion.

5. Align the motion sensor with the track. Be sure that the sensor is facing the car head-on and that its beam is
perpendicular to the sail and reflects off it. Check the setup by monitoring the software’s output while running
the car along the track.

6. Attach the mass m2 to the free end of the string so that it hangs down. Hold the car in place to keep the system
still.

7. Turn on the air track pump and give it a few seconds to allow for an even air distribution within the track.

8. Set the software to acquire the data using the start button. Release the car.

9. In the software, select the velocity plot with respect to time.
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10. Find the acceleration from the velocity plot; record this value. For this, use the same method as in the previous
experiment: isolate a straight portion of the graph and apply the Linear Fit function to get the equation of the
best-fit line, where the slope is the acceleration. Print out one copy of the plot and label it accordingly.

In the Analysis Section, your measured value is compared to that predicted by equation (4.2), and then both
values are used to calculate the total frictional force according to equation (4.3).

4.2.3 String Tension along an Air Track
This experiment is the same as the previous one except that we now also measure the tension in the string with the
force sensor. The setup is nearly the same, but the masses are different, as seen in the following steps. Refer to the
Diagram in the Background Section.

1. Fit the force sensor onto the top of the car and place the sail on top of the sensor. Ensure that the car also has
the four 50 g (silver) masses attached to its sides.

2. Weigh the mass m1 of the entire car and separately weigh the mass m2. The car’s mass m1 should be approx-
imately 0.48 kg. The mass m2 is the hanging weight that produces the tension that pulls the car; it should be
approximately 0.10 kg. Make sure to record your values for m1 and m2!

3. Place the car on the air track and tie the string to the hook on the force sensor; thread the other end of the string
around the pulley.

4. Align the motion sensor and sail. The sail should be perpendicular to the car’s direction of motion, and the
motion sensor’s beam should shine directly on the sail.

5. Attach the mass m2 to the free end of the string so that it hangs freely. Be sure to hold the car to keep the system
still.

6. Turn on the air track pump and give it a few seconds to allow even air distribution within the track.

7. Set the software to plot velocity against time for the motion sensor and to plot force against time for the force
sensor; begin recording data.

8. While holding the car still, lift up the mass m2 to slacken the string. Push TARE on the force sensor to set the
force sensor to zero for the system.

9. Gently lower the mass m2 while still holding the car motionless. Make sure that the force plot shows the tension
equal to the value of m2g (≈ 0.98 N).

10. Release the car.

11. Find and record the acceleration value by the same method as in the previous two experiments.

12. Record the tension value, which is measured directly from the force plot. Be sure to measure the plotted tension
for the duration of motion, not for any time before or after that.

13. Print out one copy of the velocity plot and the force plot and label them accordingly.

In the Analysis Section, your measured value for the tension is compared to that predicted by equation (4.4).
The accelerations are also compared, and the frictional force is calculated as well.

4.3 Analysis
i. For the experiment, acceleration along an Air Track, use the equation (4.2) to calculate the theoretical acceleration

for the measured masses. Compare these values to each other using relative error.

The percentage of error is the fraction of the force that was counteracted by frictional effects (friction of the
track and pulley and air drag on the sail). Use equation (4.3) to calculate the total frictional force.
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ii. For the experiment, String Tension along an Air Track, repeat the analysis of part ii above. Then use equation
(4.4) to calculate the theoretical tension in the string. Compare this value to the one measured directly by the force
sensor; use the relative percentage error.

4.4 Questions
1. Newton’s laws are but a model of the real world. They provide predictions for many experiments, including

those performed in this Lab. Given your analysis results, How reasonable is it to believe that Newton’s laws are
a good model for the observable world? Explain your answer.
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Lab 5

Newton’s Laws –Part II

In this lab, we continue the study of Newton’s second and third laws of motion. As in the previous lab, the rele-
vant variables, velocity, acceleration, and force, are measured using a computerized system for data acquisition. In
particular, we explore the Atwood’s machine and static and dynamic friction coefficients.

5.1 Background

Newton’s second law states that the net force, F⃗net, acting on a body is directly proportional to the object’s mass,
m, and its acceleration, a⃗. Thus the equation is given by F⃗net = ma⃗. Newton’s third law states that any action will
have an equal and opposite reaction. The following subsections describe the theory associated with each experiment
performed in this lab.

5.1.1 Acceleration through an Atwood Machine
In this experiment, we find the acceleration of a mass as it “falls”. The acceleration is not the same as the gravitational
acceleration g because the mass is attached to another, lighter mass through a string that is threaded across the pulleys
as shown in Figure (5.1).

1m

Y

2m

Figure 5.1: Schematic showing the basic outline of an Atwood Machine.
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Applying Newton’s laws, we have

F1,net = T −m1g F2,net = T −m2g
m1a = T −m1g −m2a = T −m2g

where a is the acceleration and T is the tension in the string.

To find the acceleration, we repeat the same process from before of solving both equations for tension and then set
them equal to each other to get

m1a+m1g = −m2a+m2g

a =

(
m2 −m1

m2 +m1

)
g (5.1)

Notice that we can make the acceleration a much smaller than g by significantly decreasing the difference between
m2 and m1. But we can also change a while keeping the difference the same; we do this by adding masses to both
sides such that the sum of them in the denominator increases while the difference in the numerator remains constant.

In the experiment, we vary the masses on the Atwood machine and measure the different accelerations. In the
Analysis Section, we will use relative errors to compare the measured values to those predicted by equation (5.1).

5.1.2 Static Friction on a Horizontal Surface
We now introduce the concepts of kinetic and static friction. As their names imply, kinetic friction applies to moving
objects, while static applies to those at rest. For instance, when you try to move an object, but a small amount of applied
force results in no motion, the force of friction is greater than the applied force, which is called static friction. However,
if we keep increasing the value of the applied force, it eventually will match the value of the static friction, and the
object begins to move. The point at which the applied force overcomes the static friction is called the “breakaway”
point. It is observed that at this point, the force required to balance the friction and keep the object moving at constant
speed is smaller than the force needed to initiate the motion. This reduced friction observed in moving objects is called
kinetic friction. Figure (5.2) shows the magnitude of the frictional force as a mass is pulled across a surface.
In this experiment, we explore static and kinetic friction by steadily pulling a mass on a horizontal surface until it
begins to move.
We obtain our applied force directly from the plot, which allows us to calculate the maximum coefficient of static
friction at the breakaway point. We use the following equations:

fs = |F⃗applied|

µs|N⃗ | = |F⃗applied|

µsmg = |F⃗applied|

µs =
|F⃗applied|

mg
(5.2)

where fs is the static frictional force, N is the normal force (directly perpendicular to the surface), and µs is the
coefficient of maximum static friction.

5.1.3 Kinetic Friction on an Inclined Surface
In this experiment, we find the coefficient of kinetic friction by measuring the acceleration of a mass as it slides down
an inclined plane. Like the other experiments above, the acceleration measured is not the same as the gravitational
acceleration g. In this case, however, the diminishing of the Acceleration is partly due to the incline of the plane and
partly due to the kinetic frictional force (see Figure (5.3) for an illustration).

To find the coefficient of kinetic friction, we apply Newton’s laws to the above arrangement and separate them into
Cartesian components.
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Figure 5.2: Schematic showing the breakaway point. Prior to the breakaway point, we are in the static region; after-
ward, we are in the kinetic region.
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Figure 5.3: Schematic showing a mass sliding down an inclined plane.

Fnet,x = mg sin(θ)− fk Fnet,y = −mg cos(θ) +N
ma = mg sin(θ)− fk 0 = −mg cos(θ) +N

The friction coefficient is encapsulated in the frictional force fk that appears in the x-component of the net force
equation. We use the y-component to find the expression for the normal force in terms of known parameters and
substitute this into fk:

fk = µkN

fk = µkmg cos(θ)
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We now substitute this into the x-component of the net force equation and solve for the friction coefficient. After
simplifying, we have

ma = mg sin(θ)− µkmg cos(θ)

µk = tan(θ)−
∣∣∣∣ag

∣∣∣∣ sec(θ) (5.3)

Notice the absolute value bars in this equation. This is because the acceleration, we find is a negative value. The
kinetic frictional force is always less than the static one, which implies that µk < µs.

In the experiment, we measure the acceleration of the mass and then use equation (5.3) to calculate the coefficient of
kinetic friction.

5.2 Procedure

5.2.1 Acceleration through an Atwood Machine
This experiment uses a smart pulley to measure the acceleration of a falling mass. The smart pulley is a photogate sen-
sor that detects the interruptions of its infrared beam that it projects through the spokes of the pulley. The information
is sent to the computer, where the software plots it as velocity against time.

Perform three trials of this experiment with the following parameters:

m1 (kg) m2 (kg)
Trial 1 0.250 0.260
Trial 2 0.250 0.270
Trial 3 0.250 0.280

1. Place 0.260 kg (m2) on the end of the string that is threaded around the smart pulley and 0.250 kg (m1) on the
other end. Hold the string while attaching the masses to keep the system still.

2. Set the software to acquire data.

3. Place the cushion below m2. Release the string when m2 is close to the smart pulley sensor.

4. Once the data is acquired by the software, select the velocity plot with respect to time.

5. Isolate a clean, straight portion of the velocity plot. This requires using the editing features of the software.

6. Apply the Linear Fit function to the isolated portion. The computer calculates the equation of a best-fit line for
the data.

7. Record the slope of the best-fit line. This slope is the downward acceleration of the mass m2. In the Analysis
Section, this value is compared to that predicted by equation (5.1). This method for finding the acceleration is
much better than having the software automatically calculate it from the distance data, which tends to produce
a noisy trace. Print one copy of the plot and label the printout accordingly (e.g., Atwood Machine Trial 1).

8. Repeat for the other two trials, including a printout for each.

5.2.2 Static Friction on a Horizontal Surface
This experiment uses the force sensor to measure the maximum force applied to a mass before “breakaway” on a
horizontal surface. The maximum coefficient of static friction can be calculated from this maximum force.

1. Record the material of your chosen horizontal surface. Do not worry about the specific composition; just write
the common name for it, for example “cardboard”.

2. Fit the force sensor onto the top of the 2.0 kg mass. The mass has a slot that holds the post needed to attach the
force sensor. Be sure to place it so the sensor remains attached to the mass while being pulled.
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3. Attach the string to the force sensor and push TARE to set the force sensor to zero for the initial conditions of
the system.

4. Set the software to plot force against time and begin recording.

5. Hold the string lightly and then gradually pull to increase tension until the mass breaks away.

6. Record the maximum force displayed on the plot. In the Analysis, this value is used to calculate the maximum
coefficient of static friction by equation (5.2). Print out one copy of the plot and label it accordingly.

7. Repeat the experiment with a different type of material. Make sure to record the new type of material used.

5.2.3 Kinetic Friction on an Inclined Surface
This experiment uses the motion sensor to measure the acceleration of a wooden block as it slides down an inclined
plane. From the value of the acceleration and inclination angle, the coefficient of kinetic friction can be calculated.

1. Record the inclination angle, θ, of your ramp.

2. Align the motion sensor at the top of the inclined plane. Be sure that the beam shines parallel to both the planar
surface and the path of the sliding block.

3. Place the block on the inclined plane near the top, in front of the motion sensor. Hold it in place while you
prepare the data acquisition software. You do not need to know the mass of the block for this experiment.

4. Release the block. Be sure that the software is acquiring your data.

5. Select the velocity plot with respect to time in the software.

6. Find and record the value of the acceleration. Use the same method outlined in the air track experiments above:
isolate a straight portion of the graph and apply the Linear Fit function to get the equation of the best-fit line,
where the slope is the acceleration. Print one copy of the plot and label it accordingly.

In the Analysis Section, your measured value of the acceleration and the angle of inclination are used in equation
(5.3) to calculate the coefficient of kinetic friction.

5.3 Analysis
i. For the experiment, Acceleration through an Atwood Machine, use equation (5.1) to calculate the theoretical value

of acceleration for each trial. Compare, using relative error, your theoretical values to your measured values.

The magnitude of the relative error should decrease as the difference between m1 and m2 increases. Does it?
Explain.

ii. For the experiment, acceleration along an Air Track, use the equation (4.2) to calculate the theoretical acceleration
for the measured masses. Compare these values to each other using relative error.

The percentage of error is the fraction of the force that was counteracted by frictional effects (friction of the
track and pulley and air drag on the sail). Use equation (4.3) to calculate the total frictional force.

iii. For the experiment, Static Friction on a Horizontal Surface, use your measured value of the maximum force in
equation (5.2) to calculate the coefficient of static friction.

iv. For the experiment, Kinetic Friction on an Inclined Surface, use your measured value of the acceleration and the
corrected inclination angle in equation (5.3) to calculate the coefficient of kinetic friction. You may have measured
a negative value for the acceleration; use the absolute value in your calculation.
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5.4 Questions
1. Given your analysis results, How reasonable is it to believe that Newton’s laws are a good model for the experi-

ments performed in this lab? Explain your answer.

2. Imagine that you have an inclined plane set up to perform the experiment Kinetic Friction on an Inclined Surface.
The mass of your sliding block is 0.25 kg, and the angle of inclination of the plane is π/3 radians or 60◦. You do
the experiment and calculate the coefficient of kinetic friction µk to be 0.73. What is the value of the acceleration
that you measure with these parameters? Again, pretend that the gravitational acceleration is exactly 10 m/s2.



Lab 6

Conservation of Energy

In this laboratory exercise, conservation of energy is used to analyze the motion of a wheeled car "sliding down" a
fancy ramp.

6.1 Background
Conservation of energy is a fundamental principle in physics. One of the advantages of using the energy conservation
approach in solving problems is that it only requires the use of scalars. In contrast solving problems using the analysis
a forces approach requires the use of vectors, which is somewhat more complex. We will use conservation of energy
to predict the exit speed of a car "sliding down" the ramp depicted in Figure 6.1. The actual exit speed is measured and
then used to calculate the landing spot for the car. We assume that as the car moves down the ramp, some part of the
potential energy is dissipated by friction, but the rest is converted only into translational kinetic energy. In particular,
no energy is expended in the rotation of the car’s wheels. We further assume that air drag can be neglected, both over
and off the ramp.

6.2 Procedure
1. Figure 6.1 shows the setup for this lab. Use this figure to do the energy analysis for predicting the speed of the

car at the end of the ramp; assume that the initial speed is zero and include a term for the frictional dissipation.

2. Carry out the analysis to predict the horizontal distance traveled by the car between the end of the ramp and the
landing spot. Assume that the initial velocity is known.

3. Wait for your turn to use the ramp and measure the height of the point of the ramp from where the car is
launched; the height at the exit point; the car’s length; the ramp’s exit angle.

4. Make sure that the photogate is set to "gate mode." In this mode, the photogate reports the time that its beam is
blocked, which occurs when the car is passing through it.

5. Before you launch the car be ready to catch the car with the cushioned bucket.
Carefully launch the car and record the time it takes for the car to pass through the photogate.

6. Go back to the table and use your data to produce a numerical value for the location of the landing spot.

7. Wait for your turn to test the prediction. Measure the actual distance to the landing point.

6.3 Analysis
i. Show the analysis that leads to a formula for the prediction of the exit speed. Wait until you have the formula to

plug any numbers.

31
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ii. Compare your prediction with the measured value.

iii. Give an estimate for the energy lost to friction over the ramp.

iv. Show the projectile motion analysis that leads to a formula for the prediction of distance X in Figure 6.1; Wait
until you have the formula to plug numbers. Use the value of the measured exit speed to calculate X . Enclose
your numerical value with appropriate units.

v. Compare your prediction of distance to the landing spot to the measured value.
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Figure 6.1: This figure shows the setup and the measurements required for the analysis.
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Lab 7

Binary System

In this lab, we study the conservation of energy and momentum in a binary system that allows for orbital motion. The
orbits of two spring-coupled masses are examined in the reference frame of their center of mass.

7.1 Background
The binary system studied in this lab consists of two similar objects of equal mass moving on an air table, and coupled
by a spring. The frictional losses are small, and the total energy of the system is well approximated by the sum of the
kinetic and potential energies. In our system, the mass of the spring is neglected in comparison with the mass of the
objects. Therefore, the kinetic energy is only associated with the motion of the masses. Since the objects move on a
horizontal plane, their gravitational potential energy remains unchanged. On the other hand, as the spring connecting
the masses stretches and contracts, it will store and release energy. This elastic potential energy is represented by

1

2
κ(r − r0)

2 (7.1)

where r is the length of the spring at any time, and r0 represents the length of the relaxed spring; κ is the spring
constant, which indicates the spring stiffness. Since this is an ideal spring, its force is conservative and you can show
that equation (7.1) is consistent with Hook’s law

F = −κ(r − r0). (7.2)

The total energy of two interacting objects is given by

Etotal = K1 +K2 + Vg(h) + Vs(r), (7.3)

where K1 = 1
2m1v

2
1 , and K2 = 1

2m2v
2
2 are the kinetic energies of the two objects; Vg(h) = m1gH + m2gH is

the gravitational potential energy; Vs(r) represents the elastic potential energy of the interaction, and it is given by
equation (7.1).

As long as the frictional losses are small, the total energy of the system should be constant. Furthermore, in our
experiment the gravitational potential energy only adds an constant value to the total energy and it can be ignored.
Therefore, we will write the total energy of the system as

Etotal =
1

2
m1v

2
1 +

1

2
m2v

2
2 +

1

2
κ(r − r0)

2 (7.4)

We will use this equation to test the conservation of energy in our system.

Conservation of momentum states that, if there are no outside influences on the system, the momentum of its center
of mass will not change. Therefore,

p⃗total = mtotalv⃗cm = constant (7.5)

where v⃗cm is the velocity of the center of mass. This equation shows that the center of mass moves at a constant speed
and in a constant direction.
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7.2 Procedure

The following steps provide direction to set up the equipment, perform the experiment, and prepare the data for
analysis. However, it is necessary to perform a preliminary experiment to determine the spring constant, κ.

7.2.1 Spring Constant

1. Hook the spring to a stand and attach a weight hanger to the bottom. Note that the weight hanger has a mass of
50 g.

2. Measure and record the relaxed length, l0, of the hanging spring.

3. Add a small mass m to the hanger and measure the resulting length l of the spring; record both the mass and the
length in your raw data sheet.

4. Repeat step 3 for four additional small increments of mass. Fill in a table that shows all of your values.

In the Analysis Section, this data is used to calculate the spring constant, which is needed for calculating
the potential energy of the system.

7.2.2 Equipment

1. Note that the mass of each puck is 556 g.

2. Place a large sheet of spark paper on the air table. It should cover the surface completely.

3. Place the pucks on the air table and connect them with your spring.

4. Turn on the air pump for the table.

5. Note that the frequency for the spark timer is 20 Hz.

7.2.3 Experiment

1. Make sure that the air table is leveled.

2. Position the pucks near an edge on the table; this is the starting position of the binary system.

3. Practice pushing the pucks such that they orbit each other as they drift across the table. Give the orbit sufficient
eccentricity; that is, make it somewhat elliptical so that the separation between the pucks varies measurably as
they drift. If needed, ask your TA for guidance.

4. Set the pucks in motion as practiced and quickly activate the spark timer using the foot pedal. Be sure to turn
off the spark timer as soon as one of the pucks collides with the edge of the air table. Doing so allows you to
identify more easily the pairing of dots.

5. At the end of the run, remove the spark sheet from the air table. Make sure to mark the starting point on your
spark sheet. Confirm your result with your TA before moving on.

6. To obtain the relaxed distance, r0, between the pucks, first reposition the pucks to one of the corners of the
spark paper that does not contain your binary system track. Next, make sure that the spring is not significantly
stretched or compressed and that the pucks are stationary. Finally, activate briefly the spark timer.

7. Turn off the spark timer and power down the air pump if no other group is using it.
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7.2.4 Measurements
1. Measure and record the distance between the two dots created away from the binary system paths. This distance

is the equilibrium distance, r0 or, which is needed for calculating the potential energy of the system.

2. Label the paths of the binary system as path a and path b. Index every third dot on each path or as directed by
the Instructor. Do the same for the other path. These labels indicate corresponding times of travel for each of
the pucks. Check with your TA if you are unclear about how to start the sequencing and labeling.
You may want to use two different colors for the indices to distinguish between the two pucks, making the
following measurements easier.

3. Construct a sequence of the center of mass points. Because the pucks have the same mass, the center of mass is
halfway between the dots of a pair. Connect dot pairs with a straight line, e.g., dots labeled 0 on both paths. For
each line, mark the center of the line.

4. Measure the distance between each successive center of mass point; record this distance as x in your table with
its corresponding time index. In the Analysis Setion, these distances and time intervals are used to calculate the
velocity of the center of mass, v⃗cm.

5. Show your plot to the Instructor.

6. Now measure and record the separation distance r between dot pairs (those with the same index); e.g., the
distance between dots labeled 0 on both paths. These values of r are used in the Analysis Section to calculate
the potential energy of the puck system according to equation (7.1).

7. Measure and record the distances between successive indexed dots along path a. Record these distances as ∆a
in a table with their corresponding time index. These values are used in the Analysis Section to calculate the
puck velocity.

8. Repeat for the corresponding dots along path b. Record these distances as ∆b in a table with their corresponding
time index.

7.3 Analysis
i. Calculate the velocity of the center of mass using your measured distance, x, and time intervals (i.e., ∆t = 0.15

sec) between the center of mass points. Are your measurements consistent with equation (7.5) or does the velocity
vector change along the trajectory? If so, by how much? Explain any deviations.

ii. Find the spring constant in Hook’s law, |F | = κx. This law is a linear relationship between the deformation x
(distance from equilibrium) and the applied force, F . Plotting F on the vertical axis and x on the horizontal axis
results in a straight line, whose slope represents the spring constant, κ. If our spring follows Hook’s law, our data
should resemble a straight line, although not exactly –perhaps due to measurement errors.
Plot your data with the weight on the Y axis, and the distance from equilibrium on the X axis. Use a ruler to draw
the best-fit line through your data. Remember that the best-fit line should be close to all of your data, except for
the obvious outliers. Determine the slope of the best-fit line.

iii. Calculate the kinetic energy for each puck and record them in your table. Recall that the spark frequency of 20
Hz implies a time of 0.05 seconds. Since you measured every third dot, the change in time, ∆t, is 0.15 seconds.
Hence, to determine va and vb use ∆a/∆t and ∆b/∆t, respectively, where ∆t = 0.15 seconds. Also, record the
total kinetic energy.

iv. Calculate the elastic potential energy term in equation (7.1) for each measured value of the puck separation
distance r and record them in your table.

v. Find the total energy according to equation (7.4) for each indexed position and record them in your table.

vi. Plot the kinetic energy of each puck and their sums against time Make sure to connect the dots with a line and
label each line clearly.
Explain the dynamics of these curves.
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vii. Make a second plot of the total kinetic energy, elastic potential energy, and total energy against time.
Explain the dynamics of these curves and relate them to the principle of the conservation of energy.

viii. From these plots, do you think that we have properly accounted for the potential energy of the spring? What might
cause the total energy to be misestimated? Explain!

ix. Does the second plot show the total energy as constant? If not, determine the percentage of the initial energy that
was lost and explain what happened to it.

Note: follow your instructor’s directions concerning the submission of your spark sheet with your lab report.



Lab 8

Collisions in 1-D and 2-D

In this lab, momentum and energy conservation are investigated. Specifically, we examine elastic collisions in one and
two dimensions, as well as partially and totally inelastic collisions in one dimension.

8.1 Background
We investigate momentum and energy conservation in collisions. We use two carts on an air track to demonstrate
one-dimensional elastic and inelastic collisions, and we use two pucks of equal mass on an air table to demonstrate
two-dimensional elastic collisions.

Each of the following subsections examines specific cases of the general principles of momentum and energy con-
servation. For the momentum of two masses, we have

p⃗i = p⃗f (8.1)

or
m1v⃗1i +m2v⃗2i = m1v⃗1f +m2v⃗2f . (8.2)

For the kinetic energy of two masses, we have

Ki = Kf +Q (8.3)
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2
m2v

2
2f +Q, (8.4)

where Q is the energy lost to frictional and other effects (and usually goes into heat).

8.1.1 One-Dimensional, Perfectly Elastic Collision
In this case, Q in equation (8.4) is zero, and we can use the two equations to find the velocities of the two masses after
collision (two equations and two unknowns). To simplify further, we consider the case of equal masses (i.e. m1 = m2)
with one initially stationary. Then equations (8.2) and (8.4) become, respectively,

v1i = v1f + v2f (8.5)

and
v21i = v21f + v22f . (8.6)

Substituting v1i from the first equation into the second and simplifying, we get

2v1fv2f = 0. (8.7)

Because v2f cannot be zero (assuming m2 is in the way of m1), we conclude that v1f is zero and that all the energy
went into the second mass. That is, after the collision, the first mass stops, and the second mass moves with the same
initial velocity of the first mass.

39
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8.1.2 One-Dimensional, Partially Elastic Collision
In this case, Q is not zero. If Q is known and the momentum is conserved, we can find v1f and v2f with equations
(8.2) and (8.4) using the known values of v1i, v2i, m1, and m2. Alternatively, if we do not know the value of Q, we
can find it along with one of the final velocities as long as we know all the other parameters.

However, momentum is not fully conserved in our lab experiments because of frictional losses. However, we could
assume that momentum is closely conserved if the collision time is very small. In this experiment, we test the accuracy
of our assumption about momentum conservation and find the energy loss, Q.

8.1.3 One-Dimensional, Totally Inelastic Collision
In this case, the two masses stick together upon colliding. Therefore, assuming that momentum is conserved, we find
the final velocity from equation (8.2) alone. If the second mass is initially stationary, we have from equation (8.2)

m1v1i = (m1 +m2)vf (8.8)

vf =

(
m1

m1 +m2

)
v1i (8.9)

8.1.4 Two-Dimensional Elastic Collision
This case is just like the single-dimensional one except that now both masses move in two dimensions. Assuming
conservation of momentum, we use the vector form of equation (8.2) and separate it into its Cartesian components to
get

m1v1,ix +m2v2,ix = m1v1,fx +m2v2,fx, (8.10)

where m1 = m2. Because the two masses are equal in the experiment, they cancel in the equation. Hence,

v1,iy + v2,iy = v1,fy + v2,fy (8.11)

Due to the elastic collision, the initial velocities of each puck should be equivalent to the final velocities of each puck
after the collision.

8.2 Procedure
The first three experiments that follow use the same setup of the air track and two photogate timers. Make sure that the
timers are well separated from each other and hang over the track so that the sails (flags) on the carts can pass through
completely.

8.2.1 One-Dimensional, Perfectly Elastic Collision
1. Make sure that the air tracks are leveled.

2. Place two carts of equal mass on the air track and insert a sail on the top of each. Note: All the accessories (such
as sails and bumpers) are about the same mass, so placing equal numbers of accessories on the carts should keep
the carts’ masses equal.

3. Measure and record the length of the sail. This length is needed to determine the velocities of the carts as they
pass through the photogates, which measure the period of beam interruption.

4. Insert the rubber band bumper into one of the two facing sides of the carts. This elastic bumper, along with the
nearly frictionless air track surface, makes the collisions almost perfectly elastic.

5. Position the second cart between the two photogates such that the first cart can completely pass through the first
photogate before the collision. Note that the second cart has to be motionless in its position!
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6. Position the first cart at the beginning of the track. Make sure that its sail has a little distance from the photogate.
See Figure (8.1) for the setup. Notice that m1 = m2 in this case.

7. Set the photogate timers to GATE mode.

8. Gently and briefly push the first cart toward the second. Be sure to stop pushing before the sail reaches the
photogate.

9. Record the times in the appropriate part in the raw data sheet.
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Figure 8.1: Schematic showing the setup for the 1-D perfectly elastic collision experiment.

8.2.2 One-Dimensional, Partially Elastic Collision
The setup of this experiment is similar to the one above. In this case, however, we purposely lose some energy during
the collision. Also, we increase the mass the first cart so it has some energy to spare during the collision and continue
to move forward afterward. The setting of the timers is described below.

1. Insert the needle and wax bumpers on the two facing sides of the carts. They replace the rubber band bumpers
of the previous experiment.

2. Insert a cork partially into the needle; the cork avoids the needle sticking into the wax and will absorb some
kinetic energy as it is pushed into the needle during the collision.

3. Add 200 g to the mass of the first cart and weigh the cart’s total mass; separately, weigh the total mass of the
second cart. Be sure to label the masses appropriately when recording them.

4. Position the carts as seen in Figure (8.1).

5. Set the second photogate timer to record two time periods with the memory function. After the collision, the
second cart passes through the second photogate, followed immediately by the first cart. The times of both are
needed to calculate the two final velocities.

6. Gently, but firmly, push the first cart toward the second cart.

7. Make sure that both carts pass through the second photogate. Catch the second cart after it passed through the
photogate so that it does not bounce back!

8. Record the times for each cart. The reading from the first photogate is the initial time of the first cart.
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9. The second photogate reading is the second cart’s final time (recall that the second cart was initially at rest).
The memory reading is the total time of both carts. To get the final time of the first cart, take the memory
reading (i.e., total time) and subtract the final time of the second cart.

8.2.3 One-Dimensional, Totally Inelastic Collision
In this experiment, the setup is also similar to the two previous ones, except that in this case the two carts stick together
after the collision.

1. Place a sail on the top of the first cart only since the carts stick together after the collision. Because the second
cart does not have a sail, add an extra accessory to it to equalize the masses. If you have not done so yet, remove
the additional 200 g that was added in the previous setup.

2. remove the cork from the needle.

3. Position the carts the same as seen in Figure (8.2).

4. Set the photogate timers to GATE mode.

5. Gently give the first cart a push toward the second cart.

6. Record the times in the appropriate section in the raw data sheet.

needle wax−filled

Flag

Photogate 1 Photogate 2

m 1
m 2

Figure 8.2: Schematic showing the experimental setup for the 1-D totally, inelastic collision.

8.2.4 Two-Dimensional Elastic Collision
This experiment uses the air table and two steel pucks of equal mass. The setup of the equipment is similar to the
Binary Systems lab.

1. Position the two pucks in the corners nearest to you on the air table. Be sure that a fresh sheet of spark paper
covers the air table surface.

2. Record the spark frequency of 20 Hz in your raw data sheet.

3. Power the air pump and practice launching the pucks such that they collide in the center of the table.

4. Launch the pucks as practiced and activate the spark timer at the same time by stepping on the floor pedal.



8.3. ANALYSIS 43

5. Step off the floor pedal just after the pucks hit the table’s edge. Check with your TA to get approval and then
make to note from which side the pucks were launched.

6. Appropriately label the beginning of the puck paths on the spark paper. Label the paths as # 1 and # 2 with
arrows indicating velocity vectors as seen in Figure (8.3)

Y
1f

2f

2i

34 1

2

θ
θ

θ

Path #2Path #1

X axis drawn parallel to path #1 before collision

Y axis drawn perpendicular to X

Closest points between paths

X

Figure 8.3: Diagram showing how to analyze data collected on the spark table. The darker dashed lines represent the
carbon marks on the paper. The x-axis is drawn on top of track #1 (before the collision). The y-axis is perpendicular
to the x-axis and drawn through the point where the change in direction occurs. The angles θ2i, θ1f , and θ2f are
measured and used to obtain the components of the velocities. Note the auxiliary axis drawn parallel to the main axis
and required to measure θ2i, and θ2f . Circled numbers show the suggested sequence to trace the axis, using a straight
edge –first the main axis, and then the auxiliary.

7. Use the trajectory of one of the initial paths to define the x-axis. You may want to draw your coordinate system
on the paper. Use a ruler and a straight edge. If needed, ask your TA for guidance.

8. Measure and record the x and y components of the initial velocities for each puck near the collision point. That
is, find v1,ix, v2,ix, v1,iy , and v1,iy . Do this by first measuring the initial velocity vectors for each puck, and
then break them into their Cartesian components relative to your coordinate system. Be sure to measure the
velocities as close to the collision point as possible to reduce errors.

9. Repeat the previous step for the final velocities, using the same coordinate orientation.

8.3 Analysis
i. For the experiment, One-Dimensional Perfectly-Elastic Collision, calculate the initial velocity of the first (v1i)

cart and the final velocity of the second cart (v2f ) using the time data collected, and the measured length of the
sail. Take v1i as the reference velocity and compare it to v2f by relative percentage difference.
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ii. For the experiment, One-Dimensional Partially-Elastic Collision, calculate each side of equation (8.2) to find the
initial and final momenta; you may end up with unequal momenta. Take the initial momentum as the reference
value and calculate the relative percentage difference between the initial and final momenta.

Calculate the energy loss Q from equation (8.4). Calculate the fraction of this loss to the initial kinetic energy;
that is, Q/Ki.

iii. For the experiment, One-Dimensional Totally-Inelastic Collision, calculate the two velocities from the recorded
time data and the length of the sail. Conservation of momentum predicts that the final velocity should be half the
initial for two carts of equal mass in a totally inelastic collision. How close was your measured velocity to the
prediction (use percentage of the relative error to quantify your answer)?

Calculate the fraction of kinetic energy lost – Q/Ki. Show mathematically that this quantity, Q/Ki, will equal 1
2

for the parameters of this experiment (i.e do not use numerical values). Compare your experimental value to the
accepted value by the percentage of relative error.

iv. For the experiment, Two-Dimensional Elastic Collision, use equations (8.10) and (8.11) to calculate the initial
and final momenta separately for the x and y components. For each component, compare the initial momentum
with the final momentum by relative percentage difference (taking the initial value as the reference value).



Lab 9

Inelastic Collisions

In this lab, conservation of momentum is investigated in two kinds of inelastic collisions: the ballistic pendulum and
the angular collision.

9.1 Background
The ballistic pendulum is a classic physics experiment that is used to measure the velocity of projectiles by measuring
the amount a pendulum moves when capturing a projectile. The angular collision involves dropping a steel hoop onto
a spinning disk to slow it down.

When two objects collide and stick together, we call the collision totally inelastic. Although momentum is con-
served in such a collision, Kinetic energy is not. A significant fraction of the initial Kinetic energy is lost to heat and
vibration (internal energy). The following experiments demonstrate this.

9.1.1 Ballistic Pendulum
In this experiment, a pendulum of mass mp, initially at rest, catches a steel ball with mass mb and velocity vb. The
pendulum swings upward and pushes an indicator that measures the maximum angle θ reached.

By conservation of momentum, i.e. p⃗ = mv⃗, the momentum of the system is the same before and after the colli-
sion

p⃗i = p⃗f

mbvb +mpv = (mb +mp)vp

where vp is the velocity of the pendulum-ball system. Note that the pendulum is initially at rest, hence v is 0. Therefore,

mbvb +mp · 0 = (mb +mp)vp

mbvb = (mb +mp)vp (9.1)

Note that this inelastic collision is one dimensional.

Although Kinetic energy is not conserved during the collision, it is conserved after the collision so that the gravi-
tational potential energy at the maximum height of the pendulum’s swing will equal the ball-pendulum kinetic energy
just after the collision

1

2
(mb +mp)v

2
p = (mb +mp)gh (9.2)

where h is the maximum vertical displacement of the center of mass of the pendulum with its captured ball. See
Figure (9.1).

45
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Solving equations (9.1) and (9.2) for vp, we can set them equal to each other, and solve for the velocity of the ball, vb.
That yields

vb =
mb +mp

mb

√
2gh (9.3)

Letting rcm be the distance from the pendulum’s pivot point to its center of mass, as seen in Figure (9.1), we find that
the maximum vertical displacement is

h = rcm − rcm cos(θ) = rcm[1− cos(θ)]

Substituting this into equation (9.3) for the ball’s velocity, we obtain

vb =
mb +mp

mb

√
2grcm[1− cos(θ)] (9.4)

cmr

h

θ

Figure 9.1: Schematic showing the height displacement, h, of the pendulum after the ball collided with it.

9.1.2 Angular Collision
In this experiment, a disk with moment of inertia, Id, spins with an initial angular velocity, ωi. A stationary steel hoop
with moment of inertia, Ih, is dropped onto the disk. Due to the inelastic collision, the disk and the hoop will spin
together at a slower final angular velocity, ωf . We will measure these velocities using a tachometer.

Applying conservation of angular momentum, we can determine the final angular velocity, ωf

Idωi + Ihω = (Id + Ih)ωf

But as stated, the hoop is initially stationary, hence ω is 0:

Idωi + Ih · 0 = (Id + Ih)ωf

ωf =
Id

Id + Ih
ωi (9.5)

where ω = 2πf and f is the frequency in revolutions per second.

The moment of inertia for the disk is
Id =

1

2
mdr

2
d (9.6)

where rd is the radius of the disk.

The moment of inertia for the hoop is

Ih =
1

2
mh(r

2
h,inner + r2h,outer) (9.7)

where rh,inner and rh,outer are the inner and outer radii of the hoop, respectively.

In the Analysis Section, we test the conservation of angular momentum by comparing the measured value of ωf

with the theoretical value calculated from equation (9.5).
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9.2 Procedure
The following two experiments may be completed in any order. Record all your measurements in SI units.

9.2.1 Ballistic Pendulum
1. Remove the pendulum from the apparatus. Do this by unscrewing the pivot rod.

2. Weigh and record the mass of the pendulum, mp, and the mass of the steel ball, mb. Be sure that the two gold
colored weights are securely attached to the pendulum.

3. Place the steel ball into the pendulum and find the position of the center of mass. One way to do this is as
follows (see Figure (9.2)):

(a) Tape a small piece of tape on the black part of the pendulum.

(b) Balance the pendulum on a tuning fork or some other narrow flat object.

(c) Slide the pendulum on the fork until it just begins to tip.

(d) Mark the piece of paper on the pendulum right at this tipping point.

(e) Slide the pendulum in the opposite direction until it just barely tips and, again, mark the piece of paper at
that location.

(f) Mark the midpoint of the two previous marks; this is the center of mass of the pendulum.

Figure 9.2: Schematic demonstrating how to determine rcm of the pendulum.

4. Measure the distance from the pendulum’s center of mass to its pivot hole. Record this value as rcm.

5. Remove the ball from the pendulum using the silver latch, and reassemble the apparatus.

6. Place the ball in the launcher and set to the SHORT range. Be sure that the ball does not roll away from the
launcher spring; slightly tilt the launcher to keep the ball in place using several sheets of paper.

7. Set the angle indicator on the pendulum apparatus to 0◦. If you can’t set it to 0◦, make a note of what your initial
angle reading is.

8. Launch the steel ball for a preliminary trial to get an idea what the final angle reading on the indicator should
be.

9. Reset the launcher, fire the steel ball, and record the final angle in each of three trials. Be sure to label your data
appropriately for each trial and subtract the initial angle reading if it is not at 0◦.

10. Repeat steps 7 – 9 for the other two range settings (i.e. MEDIUM and LONG) of the launcher. Again, do three
trials.
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9.2.2 Angular Collision
1. Measure and record the mass of the disk, md, and the mass of the hoop, mh. Here you will need to use the

additional hanging mass provided. Ask your TA, if needed.

2. Measure and record the radius of the disk, rd, the inner radius of the hoop, rh,inner, and the outer radius of the
hoop, rh,outer.

3. We will use the tachometer to measure the rotation frequency.
Note: There are 10 stripes on the disk. Since the tachometer reads each stripe, the final reading from the
tachometer needs to be divided by 10 to give the correct value. This is the rotation frequency f in revolutions
per minute (RPM).

4. Divide the responsibilities among your group according to: one person operates the tachometer near the outer
edge of the disk, one person holds the hoop close to the disk in preparation to drop it into the slot, and one
person records the readings.

5. Spin the disk and record the tachometer’s displayed value for the initial rotation rate. Do not use the very first
reading displayed on the tachometer!

6. Now drop the hoop into the slot on the spinning disk. Wait for a second to let the system stabilize before taking
data. Use the tachometer to record the final frequency of the system.

7. Repeat previous steps for two more trials, each with a different initial rotation rate for the disk.

9.3 Analysis

9.3.1 Ballistic Pendulum
i. For each range setting of the launcher, calculate the average of the three angles measured. Now use the average

angle for each range setting in equation (9.4) to calculate the ball’s velocity, vb. Clearly label the velocity with its
corresponding range.

ii. Find the fraction Rlost of the initial kinetic energy that is lost to heat and vibration for each range setting. Use:

Rlost = 1− 2(mb +mp)grcm[1− cos(θ)]

mbv2b
(9.8)

which is obtained from the expression

Rlost =
Ki − Vmax

Ki

where Ki is the initial kinetic energy and Vmax is the maximum gravitational potential energy.

iii. The fraction Rlost of initial energy lost is easily predicted by theory and depends only on the masses of the ball and
pendulum. Derive this theoretical expression for Rlost. Hint: substitute v2b from equation (9.4) into the equation
(9.8).

iv. Calculate the theoretical value of Rlost; compare it to each of the experimental values calculated before; use
relative error for comparison and discuss your results.

9.3.2 Angular Collision
i. To convert the earlier obtained rotation frequency f to angular velocity ω use

ω =
2πf

60

For each trial, calculate the initial and final angular velocities of the disk ωi and ωf , respectively. Note that the
units of ω are radians per seconds.
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ii. Use equations (9.6) and (9.7) to calculate the moment of inertia of the disk, Id, and the moment of inertia of the
hoop, Ih, respectively.

iii. Now evaluate equation (9.5) to find the theoretical value of the final angular velocity, ωf , by using your calculated
values of the moments of inertia and the initial angular velocity ωi.

iv. Use relative error to compare the theoretical and experimental values of the final angular velocity. Explain any
discrepancies.

v. The fraction Rlost of the initial rotational energy lost to heat and vibration is found similarly to that for the ballistic
pendulum. The initial and final rotational energies are, respectively,

Krotation,i =
1

2
Idω

2
i

and
Krotation,f =

1

2
(Id + Ih)ω

2
f

Hence, we obtain

Rlost = 1− Id + Ih
Id

(
ωf

ωi

)2

(9.9)

Calculate Rlost for each trial using equation (9.9).

vi. As was the case for the ballistic pendulum, Rlost is easily predicted from theory. In the case of the angular
collision part of the lab, it depends only on the two moments of inertia. Derive this expression step-by-step. Show
your work. Hint: Solve equation (9.5) for ωf

ωi
and substitute it into equation (9.9).

vii. Calculate the theoretical value of Rlost and compare it to each of the experimental values calculated before. Use
relative error for comparison.
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Lab 10

Torque and Moment of Inertia

In this lab, the relationship between torque and angular acceleration is used to determine the moment of inertia of a
disklike object with respect to its center of mass.

10.1 Background
The moment of inertia for a disklike object could be defined as

Icm = kMR2, (10.1)

where R and M are, respectively, the radius and mass of the object. In this lab, we determine the value of the constant
of proportionality, k.

When the torque and the angular acceleration point in the same direction, their magnitudes are proportional to each
other. That is

τ = I α, (10.2)

where the moment of inertia I is the constant of proportionality. Hence to determine the moment of inertia Icm we
could apply a known torque τ⃗ to the disk and measure the angular acceleration α⃗. In general, the relationship between
torque and the force producing the rotational motion is a vector relationship given by

τ⃗ = r⃗× F⃗ , (10.3)

where the symbol × indicates a cross product; r⃗ is a vector from the axis of rotation to the point where the force F⃗
is applied; in general r⃗ and F⃗ are not perpendicular. The component of r⃗ perpendicular to F⃗ is called the lever arm
r⊥ = r sin(θ). Therefore by controlling the magnitude of the force and the lever arm, we can generate torques with
prescribed values.

Equation (10.2) indicates that when the moment of inertia and the torque do not change in time, the torque produces a
constant angular acceleration, α. In this case, we can obtain α from

ω2 = ω2
0 + 2α(θ − θ0), (10.4)

where ω0 and ω are the initial and final angular velocities; likewise θ0 and θ are the initial and final angular displace-
ments.

10.2 Procedure
1. Obtain a mass set.

2. Measure the diameter of the disk.
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3. Use the vernier caliper to measure the diameter of the “silver hub”; Do check with your TA if you don’t remem-
ber how to read the caliper.

4. Prepare your setup. Use Figure (10.1) for guidance and check with your TA before moving on.

5. Use the peg on the “silver hub” to wrap the string around it 4 times.

6. Hold the string in place so that it does not move when you attach the mass hanger, which weighs 50 g.

7. Ensure that the hanging mass will not hit the countertop while it is falling! Now release the string.

8. After the string completely left the disk, use the tachometer to measure the stripe frequency. Record the value
in your raw data sheet and note that this reading is for 4 stripes. Do not use the very first reading displayed
on the tachometer!

9. Keeping the same mass, repeat twice more the measurement of the stripe frequency; record your measurements.

10. Add mass to the hanger in increments of 50 g until 400 g (or the amounts given by your instructor). Measure
and record three stripe frequencies for each new mass, as before.

10.3 Analysis
i. Use the stripe frequency to determine the spin frequency of the disk.

ii. For each trial (mass) average the values of the spin frequency of the disk.

iii. From the average spin frequency determine the angular velocity in radians per second.

iv. Use equation (10.4) to calculate the angular acceleration, α.

v. Determine τ using equation (10.3).

vi. Make a plot of torque v.s angular acceleration with torque on the vertical axis (even when it is the independent
variable).

vii. Use a ruler to find the best fit line for your data and determine its slope. The slope is an estimate for the moment
of inertia.

viii. Use your estimate for the moment of inertia and equation (10.1) to determine the experimental value of k for the
disk.

ix. Compare by relative error this experimental k value to the accepted value of 0.5. Comment on the result.
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Front View 

stripes 

Figure 10.1: Schematic of the setup to determine the experimental value of k. The front view shows the stripes used
by the tachometer to sense the motion of the disk. The tachometer will show the stripe frequency, which is four times
the spin frequency of the disk.
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Lab 11

Rolling Without Slipping

In this lab, the translational and rotational motion of an object rolling down a ramp are analyzed using the conservation
of energy approach. The results are then compared to values obtained directly from the definition of the moment of
inertia for each of the rolling objects.

11.1 Background
When a cylindrical or spherical object rolls on a surface without slipping, the subsequent motion is a combination of
translational and rotational motion. Slipping occurs when the tangential component of the gravitational force at the
pivot point (i.e., where the object is in contact with the surface) exceeds the static friction force. As long as there is no
slipping, energy losses to this form of friction are small, and the motion can be described by either a torque/acceleration
approach or by a conservation of energy approach.

In this lab, we use the energy approach to evaluate the moment of inertia, Icm, of some rolling objects. Since the
moment of inertia depends on the axis of rotation, we only consider the moment of inertia about the rotation axis that
passes through the center of mass of the objects. In this case, the moment of inertia is proportional to the product of
the mass and the square radius of the objects considered here. In particular, we estimate the constant of proportionality
(see equation 11.4) for various objects, and compare our experimental values to their accepted values, which are listed
in Table 11.1.

11.1.1 Object Rolling on its Outside Edge
Figure (11.1) shows an object of radius R with a center-of-mass moment of inertia Icm on a ramp that is inclined at
an angle θ with respect to the horizontal. The force of gravity acts at the object’s center of mass to produce a torque
τ about the pivot point P , which causes a clockwise rotation and motion in the +x-direction down the ramp. This
object is rolling on its outer edge so that the magnitudes of the translational velocity and acceleration are related to the
magnitudes of the angular velocity and acceleration by:

vcm = ωR (11.1)

acm = αR (11.2)

The moment of inertia about the pivot point is given by

I = mR2 + Icm (11.3)

which comes from the Parallel Axis Theorem. We can express the moment of inertia about the center of mass as

Icm = kmR2 (11.4)

where k is a dimensionless constant that depends on the geometry and the mass distribution of the object, and always
has a range of 0 < k ≤ 1. Table 11.1 shows the accepted values of k for the objects considered in this lab. Using
equation (11.4) in equation (11.3) gives

I = mR2(1 + k) (11.5)
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Figure 11.1: Schematic showing an object rolling down an inclined ramp. The radius of the object is R, while P is the
contact point.

11.1.2 Energy Conservation
We note that the translational and rotational kinetic energies of the object are derived from the potential energy change
as the object rolls down the ramp. Thus, when the object has dropped a vertical distance, h, the total energy is given
by

mgh =
1

2
mv2cm +

1

2
Icmω

2 (11.6)

For an object rolling on its outer edge, we can use equations (11.1) and (11.4) ( that is, the definition of the
rotational velocity, and the expression for the moment of inertia about the center of mass) to reduce equation (11.6).
After some simplification, we obtain

k =
2gh

v2cm
− 1 (11.7)

11.1.3 Kinematics of the center of mass
From the previous analysis, it is clear that we need the final translation velocity of the rolling object. We calculate this
velocity from the total distance and time that the object is rolling down the ramp.

Since we only need the velocity along the ramp, this problem is one dimensional. Hence, from the kinematic
equation for constant acceleration, we know that

s = s0 + v0t+
1

2
at2, (11.8)

where s is the distance traveled, v0 the initial velocity, a the acceleration, and t is the time elapsed. Applying this
equation to the center of mass of the rolling object that starts from rest and travels a distance s in the time t, we have

s =
1

2
acmt

2. (11.9)

Therefore, the acceleration of the center of mass can be determined from the total distance and time that the object
is rolling:

acm = 2s/t2. (11.10)

Given the acceleration and the distance traveled, we can also use the equation

v2f = v20 + 2as (11.11)

to obtain the final velocity of the center of mass. Since in our case v0 = 0, we have

v2cm = 2acms. (11.12)
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11.2 Procedure
The event that we are going to time starts when the object is released at the top of the ramp and ends when it hits a
cardboard box at the other end of the ramp.

1. Use masking tape to mark the starting point on the ramp.

2. For each object, measure the distance that the center of mass would travel on the ramp.

3. For each object, measure the height that the center of mass would have dropped by the end of the ramp.

4. Divide the following tasks within your team:

• recording data,

• positioning (and holding) the object at the agreed mark using a straight edge,

• positioning the time-of-flight switch at the end of the ramp on the collision path of the object,

• carefully positioning the photogate just in front of the object. Ensure that when the object is released, it
breaks the photogate’s light beam triggering the timer.

5. Make a few practice trials until everyone in the team is comfortable with the event’s timing.

6. Run three trials for each object and record the times in your raw datasheet.

11.3 Analysis
First, determine the average time that took for each of the objects to roll down the ramp.

i. Use the average time and the distance traveled on the ramp to determine the final velocity of the center of mass
for each object.

ii. Use the height dropped, h, and the final velocity, vcm, in equation (11.7) to determine k for each object.

iii. Find the percent difference between your calculated values and the accepted ones.

Object k
metal hoop 1.0
solid disk 0.50
solid sphere 0.40

Table 11.1: Accepted k values
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Lab 12

Angular Momentum

In this exercise, the conservation of angular momentum is investigated during the following situations: orbital motion,
internal changes in the moment of inertia, and changes in orientation of the axis of rotation.

12.1 Background
Conservation of angular momentum is another fundamental concept in Physics. Here, we investigate the conservation
of angular momentum in three applications. We measure a puck’s velocity while it orbits on an air table; we see the
effect of changing our moment of inertia while spinning on a rotating platform; and we see how changing the orienta-
tion of a bicycle wheel induces rotation on the same platform when initially still.

In previous labs, we studied the laws of conservation of momentum and energy. In this lab, we study another conser-
vation law – conservation of angular momentum. Like linear momentum, angular momentum is conserved in isolated
systems having no external interactions or forces.

We associate angular momentum with rotational motion and define it by

L⃗ = r⃗ × p⃗ (12.1)

L⃗ = r⃗ ×mv⃗ (12.2)

L⃗ = m(r⃗ × v⃗) (12.3)

where r⃗ is the position vector, and p⃗ = mv⃗ is the linear momentum of the particle. The symbol × denotes the cross
product of two vectors, which results in a vector perpendicular to the plane defined by the multiplying vectors; the
orientation of the resultant vector is defined by the right hand rule. Therefore, L⃗ is a vector with a direction that is
perpendicular to both r⃗ and v⃗, oriented along the axis of rotation – see Figure (12.1).

The magnitude of L⃗ is
|L⃗| = mrv⊥ (12.4)

where v⊥ is the component of the velocity perpendicular to r⃗.

The definition of L⃗ in the form given above is most readily applicable to particles or objects that can be treated as
particles. However, for extended objects that are rotating about an axis that is within the object, our form of L⃗ applies
to a mass element dm. Integrating over the object gives us

L⃗ = Iω⃗ (12.5)

where I is the moment of inertia, given by I = kmR2, and ω⃗ is the angular velocity. To find the direction of ω⃗, we
again apply the right hand rule: the fingers curl in the direction of rotation and the thumb points in the direction of ω⃗.
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Figure 12.1: Schematic showing the right hand rule. Align your fingers with vector A⃗ and then curl them in the
direction of vector B⃗. Your thumb points in the direction of the third vector (i.e. A⃗ × B⃗). Note that the direction of
rotation is significant.

Note that L⃗ and ω⃗ point in the same direction!

As with linear momentum, angular momentum is conserved at the component level. For example, if a system has
L⃗ = [Lx Ly Lz] and an external force acts on it to change Lx only, then Ly and Lz remain unchanged – that is, they
are conserved quantities of the system. We saw this for linear momentum in the projectile experiment, where vx and
px remained constant while vy and py changed under the influence of the external force of gravity.

Also note that, as with linear momentum, conservation of angular momentum does not require conservation of en-
ergy, as we will see in the following experiments.

12.1.1 Orbiting Puck
This experiment shows that objects in eccentric or elliptical orbits (such as satellites and planets) conserve their angu-
lar momenta but not their kinetic energies. Similar to the Binary Systems lab, we approximate an orbiting object with
a puck on an air table revolving around a central post to which it is attached by a spring.

To check for the conservation of angular momentum, we apply equation (12.4). An easy way to find v⊥ is to no-
tice that the puck moves in both the r⃗ and θ directions except when r⃗ is at its minimum or maximum. At these points,
r⃗ does not change with time – that is, dr/dt = 0. Therefore, the r-component of velocity is zero and the only velocity
is in θ, which is perpendicular to r –that is, v⊥ = dθ/dt for those minimum and maximum points.

12.1.2 Changing of Moment of Inertia
This experiment demonstrates that the rate at which an object spins can be changed by adjusting the object’s moment
of inertia while in motion. The familiar example is when an ice skater or ballet dancer tucks in the arms while spin-
ning in midair, which causes the skater or dancer to start spinning faster. Tucking in the arms reduces the radius in
the moment of inertia expression, given by I = kmR2, which reduces the value of the moment of inertia. In equation
(12.5), if the moment of inertia is reduced, and the value of angular momentum must stay constant, then the angular
velocity ω⃗ must increase to compensate.

In this experiment, we spin on a freely rotating chair, which is an isolated system for the z-components of angular
velocity and angular momentum. These z-components, therefore, are conserved, and we can experience the same
effects as skaters and dancers without any jumping.

12.1.3 Spinning Bicycle Wheel
In this experiment, we stand on a freely rotating platform and hold a spinning bicycle wheel in our hands. The wheel
provides the initial angular momentum vector.
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The experiment’s purpose is to observe the platform’s induced rotation as we reorient the spinning bicycle wheel.
Changing the orientation of the bicycle wheel’s angular momentum vector changes the magnitude of its z-component.
Since there is no external torque, the z-component of total angular momentum must be conserved for this system. Thus
changing the z-component in one part of the system forces the system to compensate by inducing the opposite change
in another part of the system.

Note that, as with the first experiment, kinetic energy is not conserved. That is, when we change the orientation of
the wheel and induce spinning in the platform, the wheel maintains its initial angular speed.

12.2 Procedure
The following three experiments may be completed in any order. Only the first is quantitative; the other two are
qualitative.

12.2.1 Orbiting Puck
1. Record the mass of the puck as 556 g.

2. Attach the puck to the central post on the air table with the provided lightweight spring. The mass of the spring
is negligible and does not need to be measured (the spring constant also does not need to be measured). Be sure
that the air table has a fresh sheet of spark paper covering it.

3. Place the second puck out of the way of the first but still in a corner of the table. This is needed to provide
electrical continuity for the spark.

4. Practice launching the puck into a highly eccentric or elliptical orbit. Make sure that the puck does not hit
anything.

5. Set the spark timer to 20 Hz and record this value in your raw data sheet.

6. Launch the puck as practiced and activate the spark timer for one full orbit plus a good extra half orbit. The
additional portion from the second orbit should show evidence that the orbit is decaying. This is because the air
table is not really frictionless.

7. Remove the spark paper and locate the two points where the radius is a maximum; connect them with a straight
line, see Figure (12.2). You may also want to draw a vector indicating the direction in which the puck was
orbiting.

8. Locate the two points where the radius is a minimum and connect them with a straight line. As Figure (12.2)
indicates, the two axes should be perpendicular bisectors of each other.

9. Measure and record the values of rmax and rmin.

10. Measure and record the distance between the two adjacent spark dots at the point of rmax; repeat for rmin.

In the Analysis Section, these measured values are used to calculate the angular momentum at the maximum
and minimum radii to verify the conservation law.

12.2.2 Changing of Moment of Inertia
This experiment is qualitative, so approach it with a mind for describing your observations clearly.

1. Sit on the freely rotating table with your arms close against your sides. Be sure that your feet and knees are also
close together. Note that you can use the provided hand weights, if you want to.

2. Have your lab partner spin you around at a moderate rate.

3. Extend your arms horizontally and record your observations.
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rmin
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Figure 12.2: Schematic showing an elliptical orbit. The semi-minor and semi-major axes are rmin and rmax, respec-
tively (they are measured from the center to the edges).

12.2.3 Spinning Bicycle Wheel
This experiment is also qualitative, but keep in mind the magnitudes and orientations of the angular momentum vectors
as these need to be sketched in the Analysis Section.

1. Spin the bicycle wheel as fast as possible.

2. Orient the angular velocity vector of the wheel, ω⃗wheel, towards your left on the horizontal plane. See Figure
(12.3). Do this before stepping onto the platform.

Direction of
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ω

ω

ω

Fingers curl in the direction of rotation

Thumb points in the direction of 

Right H
an

d

Figure 12.3: Schematic showing how to align the horizontal angular velocity vector of the wheel, ω⃗wheel.

3. Step onto the platform. Be sure not to change the orientation of ω⃗wheel when doing this. After stepping on the
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platform, make sure you are not moving. If you are moving, have one of your team members use their foot to
stop the platform from spinning.

4. From your stationary position, reorient ω⃗wheel by 45◦ downward and record your observations.

5. Return to the starting conditions of step 2 above (as seen in Figure (12.3)). Step off the platform and re-spin the
wheel.

6. Now reorient ω⃗wheel by 45◦ upward and record your observations.

7. Step off the platform, re-spin the wheel, and orient ω⃗wheel to point directly up, see Figure (12.4).

ω

ω

Fingers curl in the direction of rotation

Thumb points in the direction of 

ω

Direction of
Rotation

Right Hand

Figure 12.4: Schematic showing how to align the angular velocity vector of the wheel, ω⃗wheel, upward.

8. Step back onto the platform. Again, make sure you are completely stationary before continuing to the next
step!

9. Reorient ω⃗wheel by 45◦ to your left and record your observations. Straighten the wheel so that ω⃗wheel points
directly up. Ensure that you are once again completely stationary before continuing. Now reorient ω⃗wheel by
45◦ to your right; record your observations.

10. Repeat the previous step for 45◦ to the front and then to the back. Again, make sure you are stationary before
you reorient ω⃗wheel to the front and then the back. Record your observations for both alignments.

11. Return to the starting conditions of step 7 (i.e as seen in Figure (12.4)) and step back onto the platform. However,
do not spin the wheel as fast as you did before. Be completely stationary on the platform before proceeding.

12. Flip the wheel and record your observations. That is, rotate the wheel axis by 180◦ so that ω⃗wheel is pointing
directly down.
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12.3 Analysis

12.3.1 Orbiting Puck
i. For the points of rmax and rmin, use your measured values of distance between the spark dots and the time interval

to calculate v⊥. That is for each location, determine v⊥.

ii. Calculate L⃗ for each of the above points using equation (12.4).

The value of L⃗ at each extreme point should be the same, if angular momentum is conserved. Compare your
calculated values with each other by relative percentage difference, taking the first value as the reference.
Explain any discrepancies.

iii. What is the direction of the angular momentum vector L⃗ for the orbiting puck?

iv. If the air table has no friction, then the energy should be conserved. Yet the puck clearly has greater kinetic energy
at rmin than at rmax. So how is energy conserved? Explain.

12.3.2 Changing of Moment of Inertia
i. Suppose your initial moment of inertia and angular velocity are Ii and ωi, respectively. If extending your arms

doubles your moment of inertia so that If = 2Ii, then what is ωf in terms of ωi? Show your work.

ii. For the same conditions as above, calculate and compare the initial and final rotation energies using

Krotation =
1

2
Iω2. (12.6)

Why are they different? Explain.

12.3.3 Spinning Bicycle Wheel
i. When you stepped onto the platform in step 3 of the Procedure Section, the z-component of the system’s angular

momentum was zero. But when you reoriented the wheel in step 4, you attempted to change the magnitude of that
z-component.
Show conservation of angular momentum by sketching the system’s total angular momentum vectors and their
z-components for both before and after the reorientation. What can you conclude about the magnitudes of the
wheel’s angular momentum and your angular momentum?

ii. In step 6 of the Procedure Section, you reoriented the wheel in the opposite direction of that in step 4. Again,
show the conservation of angular momentum by sketching the vectors. Explain why you start rotating in the
opposite direction of that in step 4.

iii. In step 9 of the Procedure Section, you reoriented the wheel to your left and then to your right when it was
initially pointing directly up. As before, sketch the angular momentum vectors to show conservation.
Why does reorienting the wheel through each of the four different directions in steps 9 and 10 produce a result
different from that in step 4?

iv. In step 11, you quickly stopped the spinning wheel. Sketch the angular momentum vectors and explain your
subsequent motion.

v. If the initial spin rate of the wheel were the same in steps 9, 10, and 11, would your rotation rate (after completing
the instructed action for each step) be the same in each? Explain.

vi. In step 13 of the Procedure Section, you flipped the wheel. Explain your subsequent motion by sketching the
conserved angular momentum vectors.

vii. We stated in the Background Section that the angular speed of the wheel does not change when reoriented even
though it induces rotation in you; kinetic energy is clearly not conserved. If the initial kinetic energy of the system
was the rotational energy of the wheel, which remains constant, where did your rotational energy come from?
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Harmonic Oscillators

In this lab, the behavior of harmonic oscillators is investigated. The classic mass-spring system is studied under forced
and unforced conditions. Simple and conical pendulums are also studied in this lab.

13.1 Background
Oscillators occur in a variety of forms and permeate the natural world. Man-made objects such as musical instruments,
clocks, radios, television sets, and lasers make good use of oscillators. Clouds and other atmospheric phenomena ex-
hibit strong vertical oscillatory behavior in the atmosphere. The repetitive elliptical or circular motion of orbiting
astronomical objects or electrons in an atom is oscillatory in two spatial dimensions, as is the motion of rotating
weather systems such as hurricanes and tornadoes. When oscillations are coupled between adjacent regions they can
propagate through the region as a wave. Examples of this are water waves, sound waves, and electromagnetic wave
phenomena such as radio waves or light. Oscillatory motion is obviously important to understand.

Harmonic oscillations are repetitive in nature, namely they repeat after some time interval T , called the period of
the oscillation. For example, if an oscillation or rotation occurs at a frequency f = 20 cycles per second, the time for
one oscillation is T = 1/f = 1/20 second. The period and frequency of an oscillation are thus simply related by

T =
1

f
(13.1)

The units of frequency, f , are cycles per second, or Hertz (Hz). Any repetitive oscillation can be considered to be the
sum of sinusoidal oscillations at the fundamental frequency f0 = 1/T as well as at multiples or “harmonics” of f0. A
sinusoidal oscillation has the form

x = x0 cos(ωt) (13.2)

where ω is the angular frequency of the oscillations in radians per second. During one cycle of an oscillation, the
argument of the cosine function (ωt) changes by 2π radians. The angular frequency, ω is therefore 2π times the
number of oscillations per second, or

ω = 2πf =
2π

T
. (13.3)

The above provides the fundamental relations we need to study oscillatory behavior.

13.1.1 The Mass-Spring Oscillator
The classic example of a harmonic oscillator is a mass-spring system. When the mass is displaced from its equilibrium
position the spring exerts a restoring force that accelerates the mass back toward the equilibrium point. Upon reaching
the equilibrium point, however, the mass has inertia or momentum and overshoots. This keeps happening, causing the
mass to oscillate around the equilibrium position. The oscillations die out after some time as their energy is converted
to heat by frictional forces.
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If the restoring force on an object is proportional to the object’s displacement from the equilibrium position, the
equations governing the motion are relatively simple. This is the case for the mass-spring oscillator and is usually
the case for more complex systems when the displacement from equilibrium is small. For the mass-spring system the
restoring force is given by F = −ksx, where ks is the spring constant and x is the displacement of the mass from its
equilibrium position. This equation is called Hooke’s Law. Applying Newton’s second law, we have that

F = −ksx = ma (13.4)

Since acceleration a = dv
dt and velocity v = dx

dt , we get

a =
dv

dt
=

d

dt

(
dx

dt

)
=

d2x

dt2

Thus,

−ksx = m
d2x

dt2
(13.5)

This is a differential equation since it relates x to derivatives of x.

A common way of solving a differential equation is to make an educated guess about the answer and substitute
the guess into the equation to see if it satisfies the equation. Using knowledge of derivatives, one can show that the
solution

x = x0 cos(ω0t) (13.6)

satisfies equation (13.4) when the angular frequency is given by

ω0 =

√
ks
m

(13.7)

The motion is therefore sinusoidal or oscillatory in nature, as expected. An important point to note is that the frequency
is independent of the amplitude of the oscillation. This is why a piano string gives the same basic note whether it is
struck softly or loudly.

13.1.2 Resonance
The natural frequency of an oscillator can also be measured by exciting or driving the oscillator at different frequencies
and observing the response. When the excitation frequency is at or near the natural oscillation frequency, the amplitude
of the oscillations will become large and the oscillator can go wild. This phenomenon is termed resonance. Just as
on a playground swing, application of the exciting force at just the right time will cause the oscillations to increase in
size. This is easy to demonstrate, for example, in The Pendulum Section of this lab.
In this lab, we will have the spring connect to a mechanical wave driver. A magnetic coil is driven by a variable
frequency power source (called sine wave generator), causing a plunger to move up and down at the driving frequency.
This couples energy into the oscillator through the spring, causing the system to oscillate at the same frequency as the
driving signal. The oscillation amplitude is small when the driving frequency is different from the resonance frequency
and large at resonance.

13.1.3 The Pendulum
The pendulum has historically been a good timing device by virtue of the fact that its oscillation period/frequency
depends only on the length of the pendulum ℓ, and the acceleration of gravity g, which are well-defined quantities.
The restoring force in a pendulum is given by mg sin(θ), where θ is the angle from vertical. If θ is small, the small
angle approximation gives sin(θ) ≃ θ. Therefore the restoring force for small θ is

Frestoring = mg sin(θ) ≃ mgθ (13.8)

Considering the displacement to be the angle θ rather than the linear distance of the swing, the restoring force is
proportional to the displacement. This gives rise to sinusoidal oscillations of the form

θ = θ0 cos(ω0t), (13.9)
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where ω0 is given by

ω0 =

√
g

ℓ
(13.10)

and ℓ is the length of the pendulum. Note that equation (13.10) is independent of mass.

The pendulum can be made into a two-dimensional oscillator by launching it along a path that circles around the
equilibrium point. This is called a conical pendulum. In the two-dimensional case, the period of the pendulum is given
by

T = 2π

√
ℓ cos(θ)

g
(13.11)

where θ is the angle that the pendulum is displaced from vertical, as seen in Figure (13.1).

θ
l

Figure 13.1: Schematic for a pendulum showing the angle θ, the length ℓ, and the equilibrium position, which is
indicated by the dashed lines.

13.2 Procedure
For each type of oscillator below, we will measure the period or frequency of the oscillations and compare the result
with the values predicted by theory.

13.2.1 Mass-Spring Oscillator
1. Determine the spring constant. Remove the spring from the mechanical wave driver and use the metal stand

provided. Remember that the mass hanger itself has a mass of 50 g. Add known masses, increment by 50 g, to
the mass hanger. Measure the change in the length of the spring, and fill in the table in the raw data sheet.

2. Now determine the frequency of a mass-spring oscillator by measuring its period over a number of oscillations
using a stop watch. For this, hang a total mass of 150 g from the spring. This should make the measurement of
the oscillations easier to time.

3. Gently pull down the mass, release it and start the stopwatch at the same time. Count the number of full
oscillations and record them along with the time. Each group member should do at least one measurement!

4. Compute the period by dividing the time by the number of oscillations. This provides the time for one oscillation.

5. Average the values of the periods.
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13.2.2 Resonance
1. Remove the spring from the stand and connect the upper part of the spring to the mechanical wave driver. This

allows the plunger to move up and down at the driving frequency.

2. Make sure that the mechanical wave driver is in the “unlocked” position. For this, look for the silver lever on
the side of the device and the writing on the underside of the device. See Figure (13.2) for the setup.

Frequency knobs

Mechanical Wave Driver

Banana Cables

Silver Lever

Amplitude Knob

Sine Wave Generator

Figure 13.2: Schematic for the resonance setup. The silver lever is used to lock and unlock the driver.

3. Attach a total mass of 150 g to the spring.

4. Turn on the sine wave generator and dial to a starting frequency of 1 Hz.

5. Carefully adjust the driving frequency around the resonance point to determine the value at which resonance is
the strongest. For that, use the middle dial on the sine wave generator to adjust the frequency by 0.1 Hz. Record
this value as your resonance frequency, fr. Keep the amplitude of the excitation small to avoid damaging the
driving system.

6. Now vary the driving frequency from below to above resonance, observe the response and make a note in your
raw data sheet.

7. Turn off the sine wave generator.

13.2.3 The Pendulum
1. Measure the length of the pendulum, ℓ. Do not step onto the countertop!
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2. Now measure the period T of the pendulum using a photogate. Make sure that the photogate is set to the PEND
mode with the time resolution set to 1.0 ms. In this mode the gate accurately determines one period of the
pendulum.

3. Measure the period for several different initial amplitudes, such as 0.1 m to 0.9 m, incremented by 0.2 m.

4. The pendulum hanging straight down is called the equilibrium position. Use a meter stick to “pull” the pendulum
straight back to the given amplitudes. Release the pendulum. Be careful when doing this not to hit the photogate.

5. For each amplitude, record the time from the photogate.

13.2.4 2-D Pendulum
1. First, remove everything around the pendulum including the photogate. Practice creating a circular orbit. This

might take a few runs until you get a good one.

2. Now make a circle with a radius of approximately 0.8 m, which should work best. Record your actual radius in
the raw data sheet.

3. Using a stopwatch, measure the time for one or more orbits of the pendulum. Record the number of orbits N
and the time t from the stopwatch.

4. Obtain the period T by dividing the time by the number of orbits.

13.3 Analysis

13.3.1 Mass-Spring Oscillator
i. Show that x = x0 cos(ω0t) is a solution of equation (13.5). Hint: substitute the solution in the equation.

ii. Compute the natural frequency f in Hz from the average period.

iii. Calculate the spring constant in SI units. Do this by creating a plot of mass and length, and obtain the spring
constant as done in previous labs (e.g see Binary System lab). Make sure to include this plot, with correctly
labeled axes, in your lab report.

iv. Use equations (13.3) and (13.7) to obtain the theoretical value of the frequency f .

v. Compared by relative percentage error the theoretical value of f to the value determined from your data. Discuss
any differences.

13.3.2 Resonance
i. Using their relative percentage difference, compare the measured natural frequency f to the measured resonant

frequency fr. Take the natural frequency as the reference value. Why are they different? Explain.

13.3.3 The Pendulum
i. From equation (13.10) determine the theoretical value for the period.

ii. Compare, by relative percentage error, the measured periods with that predicted by theory.

iii. The slight change of the period with amplitude is caused by the restoring force becoming non-linear due to the
sin(θ) term in equation (13.8). Is that apparent in your data? Explain.

iv. Calculate the relative percentage difference in the period of the pendulum for large amplitude swings versus small
amplitude swings. Take the small amplitude period as the reference value.
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13.3.4 Conical Pendulum
i. First determine θ, which is needed for equation (13.11). This can be done by grabbing the pendulum and pulling

it out to a certain amplitude and using this as the radius of the orbit. Recall that you measured the length of the
string. These two values and some trigonometric relation allows you to determine θ. Hint: see Figure (13.1)).

ii. Now use equation (13.11) to calculate the theoretical value of the period.

iii. Compare your measured period to the theoretical value by relative error and explain any differences.



Appendix –SPARKvue Guide

In this appendix, we present a short introduction to the SPARKvue software, which is used in the Labs about Newton’s
laws. Another quick but extended reference to SPARKvue is available at

https://help.pasco.com/sparkvue/quick-reference/welcome-screen/

Sensors
Sensors are Turned on and off by pressing the power button until the red light (located by the battery icon) turns on.
You will need the Bluetooth key to pair the Sensor with your device. This key is printed on the Sensor by the Bluetooth
symbol. Locate the Sensor’s key and power button, then turn it on.

During the setting of the experiment, the Sensor’s sampling rates should be set to 50 Hz.

Experiment Setting
Start SPARKvue software on your device –You will see a splash screen like in Figure 1.

Click on Sensor Data. A new screen displaying a list of Connected Devices will show up. From this list, Select
your Sensor.

For the Motion Sensor, check only the velocity box, and from the templates, select Graph.
The Experiment Screen will display an empty grid –see Figure 2.
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Adjust the sampling options if needed by clicking on the configuration tool –Bullet 10 in Figure 2. The sampling
rate for the Motion and Force Sensors should be 50 Hz.

Recording Data

On the Experiment Screen, click the Green Start button; Note that this Button turns into a Red Square, indicating
that data is being recorded. To stop the Data collection, click on the red Button. The Data will automatically display
on the Experiment Screen; Note that a new plot is displayed every time you start and stop data collection. Legends for
these runs are shown in a Box that can be dragged to any convenient place on the Graph. You can display any run by
checking the box next to its Legend; the last run is displayed by default.

Select the run that you want to work.

Tools for Data Analysis

A tray of Data Tools is located under the Graph; you may display or hide it by clicking on the graph icon under the
Graph’s bottom-left corner. Display the Tools tray and click on the ’Scale to Fit’ button –first tool from the left; Next,
click on the ’Select Button’ (located to the right of the hand icon) and select the data segment you want to analyze. The
selected area is highlighted, and you may resize it by moving its corner points. To Zoom in the selected area, click the
’Scale to Fit’ Button. You may iterate on this process until satisfied with the Data selection. Furthermore, you may
remove the selected area by clicking on it and then on the X icon that shows up.

Once you are satisfied with the selected Data, use the ’Linear Fit’ Button to find the Best Fit Line; The Best Fit
Line’s parameters appear in a Box, which can be dragged to any convenient location on the Graph.

Add to your Journal any graphs required by your instructor, particularly the Graph containing the Best Fit Line.
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Adding Graphs to the Journal
For this purpose, first, take a snap of the Graph you want to add by clicking on the camera icon (bullet 7 in Figure 2).
The snap shows up in a tray below the camera icon. Select the snap you like to add to the Journal from the tray. The
selected Graph and two Text Boxes (Name and Notes) appear on the Experiment Screen. Fill the Text Boxes with an
appropriate description. (Your instructor may give specific instructions for the content in these Boxes.) Click ’OK’
when you finish filling in these boxes.

You can reorder the graphs as needed and delete unwanted graphs, but deleting is an irreversible operation.
You can look at the Journal’s content by clicking the icon to the camera’s left. To export the Journal, click on

the triangle icon on the left side of the Journal tray. You may close this tray by clicking the arrow head on the tray’s
top-left.

Note that on a standard installation of SPARKvue, the Journal is saved to the directory

Documents>MySparkData>SavedWork.
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Part I

Graph Paper
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